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ABSTRACT. We will analyze two methods of optimizing least-
squares problems; the Gauss-Newton Method and the Levenberg
Marquardt Algorithm. In order to compare the two methods, we
will give an explanation of each methods’ steps, as well as show
examples of two different function types. The advantages and dis-
advantages will then be explored for both methods.

1. INTRODUCTION

1.1. Overview. An optimization problem begins with a set of inde-
pendent variables and often includes conditions or restrictions that
define acceptable values of the variables. Such restrictions are called
restraints. The essential component is the objective function, which
depends in some way on the variables. The solution of an optimiza-
tion problem is a set of allowed values of the variables for which the
objective function assumes an optimal value. In mathematical terms,
optimization usually involves maximizing or minimizing; for example,
maximizing profit or minimizing cost. In a large number of practical
problems, the objective function f(z) is a sum of squares of nonlinear
functions
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that needs to be minimized. We consider the following problem

m
min f(x) = ) (r;(x))*.
This is a nonlinear least squares unconstrained minimization problem.
It is called least squares because we are minimizing the sum of squares
of these functions. Problems of this type occur when fitting model
functions to data: if ¢(x;t) represents the model function with ¢ as an
independent variable, then each r;(z) = ¢(z;t;) — y;, where d(t;,y;) is
1
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the given set of data points. Two common algorithms for solving such
least-squares problems are the Gauss-Newton (GN) Method and the
Levenberg-Marquardt Algorithm (LMA).

1.2. Terminology. The gradient V of a multivariable function f is a
vector consisting of the function’s partial derivatives:

af o
Vf(ﬂ?l,xz) = (8—2{‘1, a_xJ;) .

The Hessian matriz H(f) of a function f(x) is the square matrix of
second-order partial derivatives of r(z):
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The transpose AT of a matrix A is the matrix created by reflecting A
over its main diagonal:

Ty
-
( Tr1 T2 I3 ) = i)
T3
Lastly, a matrix A is positive-definite if, for all real non-zero vectors
z, 2 Az > 0. Equivalently, A is positive-definite if every upper-left
submatrix of A, including A itself, has a positive determinant.

1.3. Newton’s Method. Newton’s method is an algorithm for locat-
ing roots that serves as the basis for the GN method. It is derived from
the Taylor series expansion of a function f(z) at a point x = x¢ + ¢:

Fwo+6) = f(zo) + F(0)d + % Fz)d +

Newton’s method uses the first-order approximation

f(xo +9) = f(xo) + f'(20)0,

which is the equation of the tangent line to the curve at an initial guess
xo. The point where this tangent intersects the z-axis will be the next
guess xr; and is given by

f(l’o)

(11) T :.1'0+50:£B0— f/(;ljo)
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Thus, Newton’s method is the iterative process

n

Newton’s method can be used to approximate the roots of a differen-
tiable function provided that the initial guess is reasonably close to
the true root and the function’s derivative is not zero or very small in
the neighborhood of the root. A slightly different version of Newton’s
method can be used to find the extreme points of a function rather
than its roots:

T =, — J'(@n)
TL+1 n f//(xn)'
This formulation of Newton’s method serves as the basis of the
Gauss-Newton Method.

2. LEAST-SQUARES PROBLEMS

Least-Squares problems minimize the difference between a set of data
and a model function that approximates this data. Given a set of
data d(t;,y;) and a model function ¢(z;t;), we obtain the difference
of the functions with the equation r;(z) = ¢(x;t;) — y;, where y; is
y component of the data point at ¢;. The objective function of least-
squares problems is therefore

(2.1) flx) =

DN | —

By minimizing f(z), we can find the parameters that most accurately
match the model to the observed data. Each r; is called a residual and
is a smooth function from R™ to R. This equation includes the sum of
all components r; of the residual vector r of m components given by
the vector

r(x) = (ri(z), ro(x), ...t (2))T

We can then rewrite (2.1) using the residual vector: f(z) = i||r(z)||3.

When calculating the gradient of f(x), it is necessary to find the gradi-
ent of the residual vector. The Jacobian J(x) is a matrix of all Vr;(z):
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Vﬁ(ff)T
J(z) = [‘977] -
69@- 7=1,....m;i=1,...,n ( )T

Vrn(x

The gradient and Hessian of the objective can be expressed in terms of
the Jacobian:

(2.2) = ri(@)Vr(z) = J(2)r(z)

J=1

(2.3) Vif(x) = ZVTJ z)Vr( )T+er(x)v2r T

= +i7’j Vr]
=1

In many cases the gradient of each residual r; is relatively easy to
calculate, making the Jacobian a convenient substitution. J(z) and
J(z)T also comprise the first term of the Hessian matrix as seen in
(2.3). The Hessian matrix must be positive definite for all least-squares
problems. In cases where the residual is extremely close to the solution,
V2 f(x) can be approximated by the first term, thus eliminating a rather
lengthy calculation of V?r(z) in the second term. This approximation
is used for both the Gauss-Newton and Levenberg-Marquardt methods.

3. THE GAUSS-NEWTON METHOD

The Gauss-Newton method is based on the basic equation from New-
ton’s method (1.1), except that it uses a search direction vector p¢'™
and a step size a4, in the revised equation

(3.1) Thy1 = T + APk

The values that are being altered in this case are the variables of the
model function ¢(z;t;). Like Newton’s method, GN is an iterative
process, repeating equation (3.1) until the model function fits the data
points satisfactorily. Using V f(x) as f'(x) and the Hessian V2 f(x) as
f"(x), this method generalizes Newton’s method for multiple dimen-
sions. It also uses a different approximation of V2 f(z),

V() = J(x)" J(2),



THE GAUSS-NEWTON AND LEVENBERG-MARQUARDT METHODS 5

which eliminates the second term of the general equation (2.3) involving
the sum of the residual Hessians V?r;(z), for j = 1,2,...,m. This
often saves a considerable amount of computational time. The gradient
equation remains the same as the general equation involving J(x) in
(2.2). These approximations can be used to find the search direction
peN for each iteration with the equation

(3.2) JETpd™ = —Jlry.

Once we find p§™ we must find the step length oy, for each iteration. We
do this by minimizing ¢(z + ap$™Y); we minimize the model function
¢(x) at the new point zy, + aypr with respect to the variable oy (where
ar > 0). To find the optimal step length, we find «y that satisfies the
condition

(3.3) d(wr + arpf ™) < dlax) + crax V() oY

This method works for any function ¢(x) that is bounded below, with
any constant ¢; that satisfies the condition 0 < ¢; < 1. This is an
iterative process where we choose an initial guess for ay, plug it into
(3.3), and alter it until the inequality is satisfied. There are other
methods with more constraints that find even more optimal values of
ay. These are explored in [4].

Gauss-Newton has the useful characteristic that when .J; has full
rank and the gradient V fj, is non-zero, p{’™ is a descent direction and
thus a suitable direction for a line search. However, when JIp¢™ = 0,
we know J!'r, = V fi = 0, which indicates that x;, is a stationary point
and no further iterations are necessary. A restriction on this method
is the requirement that J; must have full rank. GN is notable for its
fast convergence close to the solution, but like Newton’s method, its
efficiency depends on having an accurate initial guess.

4. GRADIENT DESCENT

Gradient descent, also known as steepest descent, is an optimiza-
tion method which involves taking steps proportional to the negative
gradient of the function at the current point. Its iteration scheme is

Tyl = T — )\ka(ZEk>
This method will not be discussed in detail here, but it is worth noting
that it performs in a manner opposite to that of Gauss-Newton: gra-
dient descent will quickly approach the solution from a distance, but
its convergence will become very slow when it is close to the solution.
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5. THE LEVENBERG-MARQUARDT METHOD

Another method commonly used to minimize least-squares prob-
lems is the Levenberg-Marquardt method. This method uses the same
approximation for the Hessian matrix as Gauss-Newton but implements
a trust region strategy instead of a line search technique. At each iter-
ation we must minimize py in the equation

1 .
(5.1) §||Jkpk +7%||?,  subject to ||pi|| < Ay,

where Ay > 0 1is the trust region radius, making a spherical trust region.
The value for Ay is chosen for each iteration depending on the error
value of the corresponding pi. Given a step pr we then consider the
ratio

¢1(0) — r.(pr)

which is a comparison of the actual reduction in the numerator and the
predicted reduction in the denominator. The actual reduction gives the
difference of values in the set of data d(z) at points z; and xy + py,
while the predicted reduction gives the difference of values in the model
function ¢ at xp (where the direction vector is 0) and at xp + pg
(after taking step pg). If py is close to 1, the model is an accurate
approximation of the data and it is safe to expand the trust-region
radius Ag. If pg is positive but significantly smaller than 1 (meaning
both the model and the objective functions are decreasing, but the
model function is decreasing faster than the objective function), we
can keep our value of Ag. If py is close to zero or negative, we must
reduce Ay at the next iteration. Once a good Ay is found we can solve
for pg.

When the search direction p{™ of the GN method lies inside this trust
region (when ||[pS™N|| < Ay), then p¢™ can be used to minimize (5.1). If
¢ does not lie inside the trust region, we use the following equation
to find a new search direction vector pi* that lies inside the trust
vegion (|[pE¥|| = Ay,).

Pk =

(5.2) (JL T + XD pE™ = —J vy, where A > 0.

In order to find an appropriate A for this equation, we reorder the
variables to make it a function of A:

peN) = —(JE T + XD I (2)
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Since we are trying to find a value of p, that satisfies the equality
[[pEM|| = A, we want to find the norm of both sides of the equation
and set it equal to our established value of Aj. This is a complicated
process that involves finding a new equation of diagonal and orthogonal
matrices that are equivalent to V2f(z) and V f(z) and whose norms
can be easily evaluated. For more information of this method refer to
[4]. For simplification, we will assume a value for A and alter it based
on error of previous iterations. Typically Ay is chosen to be small. If
after the first iteration of (5.2) ||pg|| > A, then A, is chosen to be less
than A;. Likewise, if ||pk|| < A, then Ay is chosen to be greater than
A1. After finding pEM we will substitute it into (3.1) and update our
values for the variables of the model function. We do not need to worry
about the step size ay, since ||pg|| is already established by the trust
region.

LMA is a superior method to GN when f(z) is large, because we
account for the ommitted value of the Hessian with A. In effect, LMA
uses a gradient-descent method when f(x) is large, and switches to an
altered GN method implementing a trust-search region when f(x) is
small. This trust-search region technique is more accurate, but often
takes more iterations when it is far away from the minimum. LMA is
also especially useful when Jj, is rank deficient, in which case GN would
not be effective.

6. EXAMPLE: EXPONENTIAL DATA

Here is a set of data for the United States population (in millions)
and the corresponding year [5]:

Year Population
1815 8.3
1825 11.0
1835 14.7
1845 19.7
1855 26.7
1865 35.2
1875 44 .4
1885 55.9

This is the set of data points d(¢;,y;) where ¢; is the year and y; is
the population. For the sake of convenience, year 1815 will be labelled
as 1, 1825 as 2, etc. The model function is ¢(z;t) = x1e™'. Here is a
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graph of the data points and the model with 1 = 6 and x5 = .3 as our
initial guesses:

FiGUuRE 1. The exponential data and first approxima-
tion of the model function.

Our residual vector is a vector of the components r; = 6e® — y;.

6e3() — 8.3 —0.200847
6e3®@ — 11 —0.0672872
6e33) — 14.7 0.0576187
6e3@ _ 19.7 0.220702
r(@) = 6e36) _a67 | = | 0190134
6e-36) _ 352 1.09788
6e3() _ 44.4 4.59702
6e3®) _ 559 10.2391

The goal is to minimize the least-squares problem, f(z) = 3||r(x)||3.

We find ||r(z)||* by adding the squares of all the entries in r(z). Our
result is ||r(x)||* = 127.309. Therefore f(x) = 63.6545.

The Jacobian is necessary for both the Gauss-Newton and Levenberg-
Marquardt methods. Recall that the Jacobian is a matrix of all the
components of Vr(z). We compute each Vr;(z) by finding the gradient
with respect to xy and x5 and then substituting the original values for
z1 and zs.
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e’ ey 1.34986 8.09915
ez ey, 1.82212 21.8654
e3r2 3edray, 2.4596 44.2729
J(z) = etr2 Aetray, _ | 332012 79.6828
edr2 Kedray, 448169 6010.1
eb72  Gebra g, 6.04965 217.787
e’ T2y, 8.16617 342.979
eBr2 gebray, 11.0232 529.112

Now find the search direction vector p; using (3.2) for the GN method.
For this first iteration p; = (0.923529, —0.0368979). The approxima-
tions of x1 and x5 can now be updated:

x1, = 6+ 0.923529 = 6.92353
T2, = .3 — 0.0368979 = 0.263103

We repeat the GN method using these new approximations. At the
third iteration,

21, = 7.00009
s, = 0.262078,

which yields the graph:

F1GURE 2. The exponential data and model function af-
ter the third iteration of the GN method.

At the third iteration we also have the residual vector
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0.797515
0.823383
0.665998
0.270077
—0.746333
—1.46989
—0.563416
1.07124

so that ||r]|> = 6.01308 and f(z) = 3.00654, indicating that the model
has become quite accurate.

The Levenberg-Marquardt method can also be used to minimize
this least squares problem. First, we must establish a value for A.
For simplicity, we will assume a small value for the trust-region radius,
A = 0.05. Since |[pf™]] = 0.924266 > A we need to use (5.1) to find an
appropriate pI™. Since the calculations for ||r|| are the same as GN, we
use (2.1) to calculate the objective function: f(x) = 63.65305. Because
this number is relatively large, it is necessary to use equation (5.2). For
the first iteration we substitute A = 1 and use the same approximations
for J(x) and r to obtain the solution p¥™ = (0.851068, —0.0352124).
The approximations of x; and x5 can now be updated and used to find
the new value of f(z):

1, = 6+ 0.851068 = 6.85107
9, = .3 — 0.0352124 = 0.264788
f(z) = 3.08479

Since ||piM|| = 0.851796 > A and the error has decreased, we decrease
the value for A to 0.1 and repeat this method using these new approx-
imations. At the second iteration we get |[pi*|| = 0.150782 > A. At
the third, [[p™]| = 0.000401997 < A and

21, = 7.00005
29, = 0.262079
f(z) = 3.00654

The graph of the model function and data points at this iteration is
shown below.

If we were to continue this LMA process, we would no longer use (5.2)
because our new p“M is inside the trust region. Instead we would
minimize each following p in (5.1).
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FiGURE 3. The exponential data and model function af-
ter the third iteration of the LMA.

Now the results of these two methods can be compared to see
which was more effective in this specific example. At the third iteration
of each method f(z) = 3.00824 is the result for GN, and f(z) = 3.00796
is the result for LMA, demonstrating that LMA was more accurate in
this example. The difference between these two methods is almost
negligable in this case. Had the Jacobian of this function been rank-
deficient, LMA would have been required.

7. EXAMPLE: SINUSOIDAL DATA

Here is a list of average monthly high temperatures for the city of
Baton Rouge, LA[1]:

Jan | 61| Jul |92
Feb | 65 || Aug | 92
Mar | 72 | Sep | 88
Apr [ 78 || Oct | 81
May | 85 || Nov | 72
Jun | 90 | Dec | 63

This is the set of data points d(¢;,y;) where t; is the month and y; is
the temperature. January will be labelled as 1, February as 2, etc. The
model function is ¢(x;t) = zysin(xet + x3) + x4. Here is a graph of
the data points and the model with the initial guesses (1, xq, 3, 14) =
(17,0.5,10.5, 77):
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F1GURE 4. The sinusoidal data and first approximation
of the model function.

The residual vector:

17 sin
17 sin
17 sin
17 sin
17 sin
17 sin
17 sin
17 sin
17 sin
17 sin

17sin

(-5(1)
(-5(2)
(-5(3)
(-5(4)
(-5(5)
(-5(6)
(-5(7)
(-5(8)
(-5(9)

(.5(10
17sin(.5(11
(.5(12

+10.5) + 77 — 61
+10.5) + 77 — 65
+10.5) + 77 — 72
+10.5) + 77 — 78
+10.5) + 77 — 85
+10.5) + 77 — 90
+10.5) + 77 — 92
+10.5) + 77 — 92
+10.5) + 77 — 88
) +10.5) + 77 — 81
) +10.5) + 77 — 72
) +10.5) + 77 — 63

||r||* = 40.0481

—0.999834
—2.88269
—4.12174
—2.12747
—0.85716
0.664335

1.84033
0.893216

0.0548933

—0.490053
0.105644

1.89965




sin(zy + x3)

x1 cos(zy + x3)
211 cos(2x9 + 3
3x1 cos(3xry + 3
4z cos(4xy + x3
5x1 cos(dxry + 3

Txq1cos(7xy + 23
8x1 cos(8xy + 13
921 cos(9xy + 3

THE GAUSS-NEWTON AND LEVENBERG-MARQUARDT METHODS

x1c08(x9 + 3)
x1 cos(2xy + x3)
x1 co8(3xy + x3)
x1 cos(4xwy + x3)
x1 cos(bry + x3)
x1 cos(6xe + x3)
xy cos(Txe + x3)
21 cos(8xg + x3)
21 cos(9zg + x3)

sin(10x2 + x3)
sin(11xe + z3)
sin(12$2 + 1‘3)

10z cos(10xy + x3) w1 cos(10xy + x3)
11z cos(11lxy + x3) w1 cos(1lxy + x3)
122 cos(12x9 + x3) @1 cos(12x9 + x3)

0.0752369 0.0752369 1
16.4324 8.21618 1
43.0366 14.3455 1
67.8503 16.9626 1
77.133 15.4266 1
60.6819 10.1137 1

1
1
1
1
1

(
( )
( )
( )
( )
621 cos(6xg + x3)
( )
( )
( )
(
(

UM Gy TN G T VUG VA G T G U G N G ¥

—0.99999
—0.875452
—0.536573

—0.0663219

0.420167

0.803784

0.990607

0.934895

0.650288

0.206467

16.2717 2.32453
—48.2697 —6.03371
—116.232 —12.9147
—166.337 —16.6337
—0.287903 —179.082 —16.2802
—0.711785 —143.289 —11.9407 1

As before, we will use GN and find the direction vector p; using
(3.2). The first iteration yields p; = (—0.904686, —0.021006, 0.230013,
—0.17933), and so z; through z, can be updated:

x1, = 17 —0.904686 = 16.0953
T2, = .5 — 0.021006 = 0.478994
x3, = 10.5 + 0.230013 = 10.73
x4, = 77— 0.17933 = 76.8207

At the second iteration,

21, = 17.5078
s, = 0.463583
w3, = 10.8584

4, = 76.1255
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and ||r||> = 13.6556.

P B
8 10 12

FIGURE 5. The sinusoidal data and model function after
the second iteration of GN.

Since ||r|] = 6.32836 and ||pSYN|| = 0.95077 initially, the LMA can
also be used. Again starting with A = 1, we find that p; = (—0.7595,
—0.0219004, 0.236647, —0.198876) and

21, = 17 —0.7595 = 16.2405
Z9, = .0 — 0.0219004 = 0.4781
x3, = 10.5 + 0.236647, = 10.7366

x4, = 77— 0.198876 = 76.8011

Now ||r||> = 13.6458 and ||piM|| = 0.820289, so A is decreased by
a factor of 10 and the process continues. At the second iteration,
|[pEM|| = 0.566443,

21, = 16.5319
s, = 0.465955
23, = 10.8305
24, = T6.3247

and ||r||? = 13.0578. Since ||r||* = 13.6556 after two iterations of GN,
LMA is slightly more efficient in this example. The process could be
continued for A < ||pfM|| = 0.566443.
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FIGURE 6. The sinusoidal data and model function after
the second iteration of LMA.

8. OTHER METHODS

In cases where the residual is large and the model does not fit

the function well, methods other than Gauss-Newton and Levenberg-
Marquardt must be used. This is because both GN and LMA approx-
imate V2f(x) by eliminating the second term of (2.3) involving the
calculation of V2r(x). Some of these methods are explored in [2].
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