
SOLVING NONLINEAR LEAST-SQUARES PROBLEMS
WITH THE GAUSS-NEWTON AND

LEVENBERG-MARQUARDT METHODS

ALFONSO CROEZE, LINDSEY PITTMAN, AND WINNIE REYNOLDS

Abstract. We will analyze two methods of optimizing least-
squares problems; the Gauss-Newton Method and the Levenberg
Marquardt Algorithm. In order to compare the two methods, we
will give an explanation of each methods’ steps, as well as show
examples of two different function types. The advantages and dis-
advantages will then be explored for both methods.

1. Introduction

1.1. Overview. An optimization problem begins with a set of inde-
pendent variables and often includes conditions or restrictions that
define acceptable values of the variables. Such restrictions are called
restraints. The essential component is the objective function, which
depends in some way on the variables. The solution of an optimiza-
tion problem is a set of allowed values of the variables for which the
objective function assumes an optimal value. In mathematical terms,
optimization usually involves maximizing or minimizing; for example,
maximizing profit or minimizing cost. In a large number of practical
problems, the objective function f(x) is a sum of squares of nonlinear
functions

f(x) =
1

2

m∑
j=1

(rj(x))2 =
1

2
||r(x)||22

that needs to be minimized. We consider the following problem

min
x
f(x) =

m∑
j=1

(rj(x))2.

This is a nonlinear least squares unconstrained minimization problem.
It is called least squares because we are minimizing the sum of squares
of these functions. Problems of this type occur when fitting model
functions to data: if φ(x; t) represents the model function with t as an
independent variable, then each rj(x) = φ(x; tj)− yj, where d(tj, yj) is

1

2 ALFONSO CROEZE, LINDSEY PITTMAN, AND WINNIE REYNOLDS

the given set of data points. Two common algorithms for solving such
least-squares problems are the Gauss-Newton (GN) Method and the
Levenberg-Marquardt Algorithm (LMA).

1.2. Terminology. The gradient ∇ of a multivariable function f is a
vector consisting of the function’s partial derivatives:

∇f(x1, x2) =

(
∂f

∂x1
,
∂f

∂x2

)
.

The Hessian matrix H(f) of a function f(x) is the square matrix of
second-order partial derivatives of r(x):

H(f(x1, x2)) =


∂f

∂x21

∂f

∂x1∂x2
∂f

∂x1∂x2

∂f

∂x22

 .

The transpose A> of a matrix A is the matrix created by reflecting A
over its main diagonal:

(
x1 x2 x3

)>
=

 x1
x2
x3

 .

Lastly, a matrix A is positive-definite if, for all real non-zero vectors
z, z>Az > 0. Equivalently, A is positive-definite if every upper-left
submatrix of A, including A itself, has a positive determinant.

1.3. Newton’s Method. Newton’s method is an algorithm for locat-
ing roots that serves as the basis for the GN method. It is derived from
the Taylor series expansion of a function f(x) at a point x = x0 + δ:

f(x0 + δ) = f(x0) + f ′(x0)δ +
1

2
f ′′(x0)δ

2 +

Newton’s method uses the first-order approximation

f(x0 + δ) ≈ f(x0) + f ′(x0)δ,

which is the equation of the tangent line to the curve at an initial guess
x0. The point where this tangent intersects the x-axis will be the next
guess x1 and is given by

(1.1) x1 = x0 + δ0 = x0 −
f(x0)

f ′(x0)
.

THE GAUSS-NEWTON AND LEVENBERG-MARQUARDT METHODS 3

Thus, Newton’s method is the iterative process

xn+1 = xn −
f(xn)

f ′(xn)
.

Newton’s method can be used to approximate the roots of a differen-
tiable function provided that the initial guess is reasonably close to
the true root and the function’s derivative is not zero or very small in
the neighborhood of the root. A slightly different version of Newton’s
method can be used to find the extreme points of a function rather
than its roots:

xn+1 = xn −
f ′(xn)

f ′′(xn)
.

This formulation of Newton’s method serves as the basis of the
Gauss-Newton Method.

2. Least-Squares Problems

Least-Squares problems minimize the difference between a set of data
and a model function that approximates this data. Given a set of
data d(tj, yj) and a model function φ(x; tj), we obtain the difference
of the functions with the equation rj(x) = φ(x; tj) − yj, where yj is
y component of the data point at tj. The objective function of least-
squares problems is therefore

(2.1) f(x) =
1

2

m∑
j=1

r2j (x).

By minimizing f(x), we can find the parameters that most accurately
match the model to the observed data. Each rj is called a residual and
is a smooth function from Rn to R. This equation includes the sum of
all components rj of the residual vector r of m components given by
the vector

r(x) = (r1(x), r2(x), ..., rm(x))T

.
We can then rewrite (2.1) using the residual vector: f(x) = 1

2
||r(x)||22.

When calculating the gradient of f(x), it is necessary to find the gradi-
ent of the residual vector. The Jacobian J(x) is a matrix of all ∇rj(x):

4 ALFONSO CROEZE, LINDSEY PITTMAN, AND WINNIE REYNOLDS

J(x) =

[
∂rj
∂xi

]
j=1,...,m;i=1,...,n

=


∇r1(x)T

∇r2(x)T

...
∇rm(x)T


The gradient and Hessian of the objective can be expressed in terms of
the Jacobian:

(2.2) ∇f(x) =
m∑
j=1

rj(x)∇rj(x) = J(x)T r(x)

∇2f(x) =
m∑
j=1

∇rj(x)∇rj(x)T +
m∑
j=1

rj(x)∇2rj(x)(2.3)

= J(x)TJ(x) +
m∑
j=1

rj(x)∇2rj(x)

In many cases the gradient of each residual rj is relatively easy to
calculate, making the Jacobian a convenient substitution. J(x) and
J(x)T also comprise the first term of the Hessian matrix as seen in
(2.3). The Hessian matrix must be positive definite for all least-squares
problems. In cases where the residual is extremely close to the solution,
∇2f(x) can be approximated by the first term, thus eliminating a rather
lengthy calculation of ∇2r(x) in the second term. This approximation
is used for both the Gauss-Newton and Levenberg-Marquardt methods.

3. The Gauss-Newton Method

The Gauss-Newton method is based on the basic equation from New-
ton’s method (1.1), except that it uses a search direction vector pGN

k

and a step size αk in the revised equation

(3.1) xk+1 = xk + αkpk.

The values that are being altered in this case are the variables of the
model function φ(x; tj). Like Newton’s method, GN is an iterative
process, repeating equation (3.1) until the model function fits the data
points satisfactorily. Using ∇f(x) as f ′(x) and the Hessian ∇2f(x) as
f ′′(x), this method generalizes Newton’s method for multiple dimen-
sions. It also uses a different approximation of ∇2f(x),

∇2f(x) ≈ J(x)TJ(x),

THE GAUSS-NEWTON AND LEVENBERG-MARQUARDT METHODS 5

which eliminates the second term of the general equation (2.3) involving
the sum of the residual Hessians ∇2rj(x), for j = 1, 2, ...,m. This
often saves a considerable amount of computational time. The gradient
equation remains the same as the general equation involving J(x) in
(2.2). These approximations can be used to find the search direction
pGN
k for each iteration with the equation

(3.2) JT
k Jkp

GN
k = −JT

k rk.

Once we find pGN
k we must find the step length αk for each iteration. We

do this by minimizing φ(xk +αkp
GN
k); we minimize the model function

φ(x) at the new point xk +αkpk with respect to the variable αk (where
αk > 0). To find the optimal step length, we find αk that satisfies the
condition

(3.3) φ(xk + αkp
GN
k) ≤ φ(xk) + c1αk∇φ(xk)TpGN

k .

This method works for any function φ(x) that is bounded below, with
any constant c1 that satisfies the condition 0 < c1 < 1. This is an
iterative process where we choose an initial guess for αk, plug it into
(3.3), and alter it until the inequality is satisfied. There are other
methods with more constraints that find even more optimal values of
αk. These are explored in [4].

Gauss-Newton has the useful characteristic that when Jk has full
rank and the gradient ∇fk is non-zero, pGN

k is a descent direction and
thus a suitable direction for a line search. However, when JT

k p
GN
k = 0,

we know JT
k rk = ∇fk = 0, which indicates that xk is a stationary point

and no further iterations are necessary. A restriction on this method
is the requirement that Jk must have full rank. GN is notable for its
fast convergence close to the solution, but like Newton’s method, its
efficiency depends on having an accurate initial guess.

4. Gradient Descent

Gradient descent, also known as steepest descent, is an optimiza-
tion method which involves taking steps proportional to the negative
gradient of the function at the current point. Its iteration scheme is

xk+1 = xk − λk∇f(xk).

This method will not be discussed in detail here, but it is worth noting
that it performs in a manner opposite to that of Gauss-Newton: gra-
dient descent will quickly approach the solution from a distance, but
its convergence will become very slow when it is close to the solution.

6 ALFONSO CROEZE, LINDSEY PITTMAN, AND WINNIE REYNOLDS

5. The Levenberg-Marquardt Method

Another method commonly used to minimize least-squares prob-
lems is the Levenberg-Marquardt method. This method uses the same
approximation for the Hessian matrix as Gauss-Newton but implements
a trust region strategy instead of a line search technique. At each iter-
ation we must minimize pk in the equation

(5.1)
1

2
||Jkpk + rk||2, subject to ||pk|| ≤ ∆k,

where ∆k > 0 is the trust region radius, making a spherical trust region.
The value for ∆k is chosen for each iteration depending on the error
value of the corresponding pk. Given a step pk we then consider the
ratio

ρk =
d(xk)− d(xk + pk)

φk(0)− φk(pk)

which is a comparison of the actual reduction in the numerator and the
predicted reduction in the denominator. The actual reduction gives the
difference of values in the set of data d(x) at points xk and xk + pk,
while the predicted reduction gives the difference of values in the model
function φk at xk (where the direction vector is 0) and at xk + pk
(after taking step pk). If ρk is close to 1, the model is an accurate
approximation of the data and it is safe to expand the trust-region
radius ∆k. If ρk is positive but significantly smaller than 1 (meaning
both the model and the objective functions are decreasing, but the
model function is decreasing faster than the objective function), we
can keep our value of ∆k. If ρk is close to zero or negative, we must
reduce ∆k at the next iteration. Once a good ∆k is found we can solve
for pk.
When the search direction pGN

k of the GN method lies inside this trust
region (when ||pGN

k || ≤ ∆k), then pGN
k can be used to minimize (5.1). If

pGN
k does not lie inside the trust region, we use the following equation

to find a new search direction vector pLMk that lies inside the trust
region (||pLMk || = ∆k).

(5.2) (JT
k Jk + λI)pLMk = −JT

k rk, where λ > 0.

In order to find an appropriate λ for this equation, we reorder the
variables to make it a function of λ:

pk(λ) = −(JT
k Jk + λI)−1J(x)T rk

THE GAUSS-NEWTON AND LEVENBERG-MARQUARDT METHODS 7

Since we are trying to find a value of pk that satisfies the equality
||pLMk || = ∆k, we want to find the norm of both sides of the equation
and set it equal to our established value of ∆k. This is a complicated
process that involves finding a new equation of diagonal and orthogonal
matrices that are equivalent to ∇2f(x) and ∇f(x) and whose norms
can be easily evaluated. For more information of this method refer to
[4]. For simplification, we will assume a value for λ and alter it based
on error of previous iterations. Typically λ1 is chosen to be small. If
after the first iteration of (5.2) ||pk|| > ∆, then λ2 is chosen to be less
than λ1. Likewise, if ||pk|| < ∆, then λ2 is chosen to be greater than
λ1. After finding pLMk we will substitute it into (3.1) and update our
values for the variables of the model function. We do not need to worry
about the step size αk, since ||pk|| is already established by the trust
region.

LMA is a superior method to GN when f(x) is large, because we
account for the ommitted value of the Hessian with λ. In effect, LMA
uses a gradient-descent method when f(x) is large, and switches to an
altered GN method implementing a trust-search region when f(x) is
small. This trust-search region technique is more accurate, but often
takes more iterations when it is far away from the minimum. LMA is
also especially useful when Jk is rank deficient, in which case GN would
not be effective.

6. Example: Exponential Data

Here is a set of data for the United States population (in millions)
and the corresponding year [5]:

Year Population

1815 8.3

1825 11.0

1835 14.7

1845 19.7

1855 26.7

1865 35.2

1875 44.4

1885 55.9

This is the set of data points d(tj, yj) where tj is the year and yj is
the population. For the sake of convenience, year 1815 will be labelled
as 1, 1825 as 2, etc. The model function is φ(x; t) = x1e

x2t. Here is a

8 ALFONSO CROEZE, LINDSEY PITTMAN, AND WINNIE REYNOLDS

graph of the data points and the model with x1 = 6 and x2 = .3 as our
initial guesses:

2 3 4 5 6 7 8

10

20

30

40

50

Figure 1. The exponential data and first approxima-
tion of the model function.

Our residual vector is a vector of the components rj = 6e.3t − yj.

r(x) =



6e.3(1) − 8.3
6e.3(2) − 11

6e.3(3) − 14.7
6e.3(4) − 19.7
6e.3(5) − 26.7
6e.3(6) − 35.2
6e.3(7) − 44.4
6e.3(8) − 55.9


=



−0.200847
−0.0672872
0.0576187
0.220702
0.190134
1.09788
4.59702
10.2391



The goal is to minimize the least-squares problem, f(x) = 1
2
||r(x)||22.

We find ||r(x)||2 by adding the squares of all the entries in r(x). Our
result is ||r(x)||2 = 127.309. Therefore f(x) = 63.6545.
The Jacobian is necessary for both the Gauss-Newton and Levenberg-
Marquardt methods. Recall that the Jacobian is a matrix of all the
components of∇r(x). We compute each∇rj(x) by finding the gradient
with respect to x1 and x2 and then substituting the original values for
x1 and x2.

THE GAUSS-NEWTON AND LEVENBERG-MARQUARDT METHODS 9

J(x) =



ex2 ex2x1
e2x2 2e2x2x1
e3x2 3e3x2x1
e4x2 4e4x2x1
e5x2 5e5x2x1
e6x2 6e6x2x1
e7x2 7e7x2x1
e8x2 8e8x2x1


=



1.34986 8.09915
1.82212 21.8654
2.4596 44.2729
3.32012 79.6828
4.48169 6010.1
6.04965 217.787
8.16617 342.979
11.0232 529.112


Now find the search direction vector pk using (3.2) for the GN method.
For this first iteration p1 = (0.923529,−0.0368979). The approxima-
tions of x1 and x2 can now be updated:

x11 = 6 + 0.923529 = 6.92353
x21 = .3− 0.0368979 = 0.263103

We repeat the GN method using these new approximations. At the
third iteration,

x13 = 7.00009
x23 = 0.262078,

which yields the graph:

2 3 4 5 6 7 8

10

20

30

40

50

Figure 2. The exponential data and model function af-
ter the third iteration of the GN method.

At the third iteration we also have the residual vector

10 ALFONSO CROEZE, LINDSEY PITTMAN, AND WINNIE REYNOLDS

r =



0.797515
0.823383
0.665998
0.270077
−0.746333
−1.46989
−0.563416

1.07124


so that ||r||2 = 6.01308 and f(x) = 3.00654, indicating that the model
has become quite accurate.

The Levenberg-Marquardt method can also be used to minimize
this least squares problem. First, we must establish a value for ∆.
For simplicity, we will assume a small value for the trust-region radius,
∆ = 0.05. Since ||pGN

1 || = 0.924266 > ∆ we need to use (5.1) to find an
appropriate pLM1 . Since the calculations for ||r|| are the same as GN, we
use (2.1) to calculate the objective function: f(x) = 63.65305. Because
this number is relatively large, it is necessary to use equation (5.2). For
the first iteration we substitute λ = 1 and use the same approximations
for J(x) and r to obtain the solution pLM1 = (0.851068,−0.0352124).
The approximations of x1 and x2 can now be updated and used to find
the new value of f(x):

x11 = 6 + 0.851068 = 6.85107
x21 = .3− 0.0352124 = 0.264788
f(x) = 3.08479

Since ||pLM1 || = 0.851796 > ∆ and the error has decreased, we decrease
the value for λ to 0.1 and repeat this method using these new approx-
imations. At the second iteration we get ||pLM2 || = 0.150782 > ∆. At
the third, ||pLM3 || = 0.000401997 < ∆ and

x13 = 7.00005
x23 = 0.262079
f(x) = 3.00654

The graph of the model function and data points at this iteration is
shown below.
If we were to continue this LMA process, we would no longer use (5.2)
because our new pLM is inside the trust region. Instead we would
minimize each following pk in (5.1).

THE GAUSS-NEWTON AND LEVENBERG-MARQUARDT METHODS 11

2 3 4 5 6 7 8

10

20

30

40

50

Figure 3. The exponential data and model function af-
ter the third iteration of the LMA.

Now the results of these two methods can be compared to see
which was more effective in this specific example. At the third iteration
of each method f(x) = 3.00824 is the result for GN, and f(x) = 3.00796
is the result for LMA, demonstrating that LMA was more accurate in
this example. The difference between these two methods is almost
negligable in this case. Had the Jacobian of this function been rank-
deficient, LMA would have been required.

7. Example: Sinusoidal Data

Here is a list of average monthly high temperatures for the city of
Baton Rouge, LA[1]:

Jan 61 Jul 92
Feb 65 Aug 92
Mar 72 Sep 88
Apr 78 Oct 81
May 85 Nov 72
Jun 90 Dec 63

This is the set of data points d(tj, yj) where tj is the month and yj is
the temperature. January will be labelled as 1, February as 2, etc. The
model function is φ(x; t) = x1sin(x2t + x3) + x4. Here is a graph of
the data points and the model with the initial guesses (x1, x2, x3, x4) =
(17, 0.5, 10.5, 77):

12 ALFONSO CROEZE, LINDSEY PITTMAN, AND WINNIE REYNOLDS

2 4 6 8 10 12

60

65

70

75

80

85

90

Figure 4. The sinusoidal data and first approximation
of the model function.

The residual vector:

r(x) =



17 sin(.5(1) + 10.5) + 77− 61
17 sin(.5(2) + 10.5) + 77− 65
17 sin(.5(3) + 10.5) + 77− 72
17 sin(.5(4) + 10.5) + 77− 78
17 sin(.5(5) + 10.5) + 77− 85
17 sin(.5(6) + 10.5) + 77− 90
17 sin(.5(7) + 10.5) + 77− 92
17 sin(.5(8) + 10.5) + 77− 92
17 sin(.5(9) + 10.5) + 77− 88
17 sin(.5(10) + 10.5) + 77− 81
17 sin(.5(11) + 10.5) + 77− 72
17 sin(.5(12) + 10.5) + 77− 63



=



−0.999834
−2.88269
−4.12174
−2.12747
−0.85716
0.664335
1.84033
0.893216
0.0548933
−0.490053
0.105644
1.89965



||r||2 = 40.0481

THE GAUSS-NEWTON AND LEVENBERG-MARQUARDT METHODS 13

J(x) =



sin(x2 + x3) x1 cos(x2 + x3) x1cos(x2 + x3) 1
sin(2x2 + x3) 2x1 cos(2x2 + x3) x1 cos(2x2 + x3) 1
sin(3x2 + x3) 3x1 cos(3x2 + x3) x1 cos(3x2 + x3) 1
sin(4x2 + x3) 4x1 cos(4x2 + x3) x1 cos(4x2 + x3) 1
sin(5x2 + x3) 5x1 cos(5x2 + x3) x1 cos(5x2 + x3) 1
sin(6x2 + x3) 6x1 cos(6x2 + x3) x1 cos(6x2 + x3) 1
sin(7x2 + x3) 7x1 cos(7x2 + x3) x1 cos(7x2 + x3) 1
sin(8x2 + x3) 8x1 cos(8x2 + x3) x1 cos(8x2 + x3) 1
sin(9x2 + x3) 9x1 cos(9x2 + x3) x1 cos(9x2 + x3) 1
sin(10x2 + x3) 10x1 cos(10x2 + x3) x1 cos(10x2 + x3) 1
sin(11x2 + x3) 11x1 cos(11x2 + x3) x1 cos(11x2 + x3) 1
sin(12x2 + x3) 12x1 cos(12x2 + x3) x1 cos(12x2 + x3) 1



=



−0.99999 0.0752369 0.0752369 1
−0.875452 16.4324 8.21618 1
−0.536573 43.0366 14.3455 1
−0.0663219 67.8503 16.9626 1

0.420167 77.133 15.4266 1
0.803784 60.6819 10.1137 1
0.990607 16.2717 2.32453 1
0.934895 −48.2697 −6.03371 1
0.650288 −116.232 −12.9147 1
0.206467 −166.337 −16.6337 1
−0.287903 −179.082 −16.2802 1
−0.711785 −143.289 −11.9407 1


As before, we will use GN and find the direction vector pk using
(3.2). The first iteration yields p1 = (−0.904686,−0.021006, 0.230013,
−0.17933), and so x1 through x4 can be updated:

x11 = 17− 0.904686 = 16.0953
x21 = .5− 0.021006 = 0.478994
x31 = 10.5 + 0.230013 = 10.73
x41 = 77− 0.17933 = 76.8207

At the second iteration,

x12 = 17.5078
x22 = 0.463583
x32 = 10.8584
x42 = 76.1255

14 ALFONSO CROEZE, LINDSEY PITTMAN, AND WINNIE REYNOLDS

and ||r||2 = 13.6556.

2 4 6 8 10 12

65

70

75

80

85

90

Figure 5. The sinusoidal data and model function after
the second iteration of GN.

Since ||r|| = 6.32836 and ||pGN
1 || = 0.95077 initially, the LMA can

also be used. Again starting with λ = 1, we find that p1 = (−0.7595,
−0.0219004, 0.236647,−0.198876) and

x11 = 17− 0.7595 = 16.2405
x21 = .5− 0.0219004 = 0.4781
x31 = 10.5 + 0.236647,= 10.7366
x41 = 77− 0.198876 = 76.8011

Now ||r||2 = 13.6458 and ||pLM1 || = 0.820289, so λ is decreased by
a factor of 10 and the process continues. At the second iteration,
||pLM2 || = 0.566443,

x12 = 16.5319
x22 = 0.465955
x32 = 10.8305
x42 = 76.3247

and ||r||2 = 13.0578. Since ||r||2 = 13.6556 after two iterations of GN,
LMA is slightly more efficient in this example. The process could be
continued for ∆ < ||pLM2 || = 0.566443.

THE GAUSS-NEWTON AND LEVENBERG-MARQUARDT METHODS 15

2 4 6 8 10 12

65

70

75

80

85

90

Figure 6. The sinusoidal data and model function after
the second iteration of LMA.

8. Other Methods

In cases where the residual is large and the model does not fit
the function well, methods other than Gauss-Newton and Levenberg-
Marquardt must be used. This is because both GN and LMA approx-
imate ∇2f(x) by eliminating the second term of (2.3) involving the
calculation of ∇2r(x). Some of these methods are explored in [2].

Acknowledgements

We would like to thank our professor, Dr. Humberto Munoz, and
our graduate student, Ladorian Latin, for helping guide us through
this process. We would also like to thank Dr. Mark Davidson and the
SMILE program for making this experience possible.

References

[1] ”Average Weather for Baton Rouge, LA - Temperature and Precipitation.”
The Weather Channel. 1 July 2012 (http://www.weather.com/weather/wx
climatology/monthly/graph/USLA0033)

[2] Gill, Philip E.; Murray, Walter. Algorithms for the solution of the nonlinear
least-squares problem. SIAM Journal on Numerical Analysis 15 (5): 977-992.
1978.

[3] Griva, Igor; Nash, Stephen; Sofer Ariela. Linear and Nonlinear Optimization.
2nd ed. Society for Industrial Mathematics. 2008.

[4] Nocedal, Jorge; Wright, Steven J. Numerical Optimization, 2nd Edition.
Springer, Berlin, 2006.

[5] ”The Population of the United States.” University of Illinois. 28 June 2012
(mste.illinois.edu/malcz/ExpFit/data.html).

[6] Ranganathan, Ananth. ”The Levenberg-Marquardt Algorithm.” Honda Re-
search Institute, USA. 8 June 2004. 1 July 2012 (http://ananth.in/Notes
files/lmtut.pdf).

16 ALFONSO CROEZE, LINDSEY PITTMAN, AND WINNIE REYNOLDS

Louisiana State University, Baton Rouge, Louisiana
E-mail address: acroez1@lsu.edu

University of Mississippi, Oxford, Mississippi
E-mail address: lbpittma@olemiss.edu

Louisiana State University, Baton Rouge, Louisiana
E-mail address: wreyno2@lsu.edu

