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Abstract. While solution methods are well-known for optimization problems

with a single objective function, there are many common real world scenarios
in which a single function does not suffice. Multiobjective or multicriteria

optimization is the branch of optimization that deals with the case of two or

more objective functions. An important example is the biobjective problem
that arises in portfolio optimization. In this paper we will examine the use of

the weighted sum of deviations and Chebyshev goal programming methods to

find optimal allocations of capital in various assets that attains a desired level
of return with a minimal amount of risk.

1. Introduction

Optimization problems play a decisive role in helping investors make informed
decisions about their investments and strategies. However, most simple modeling
techniques only optimize exactly one objective. The single-objective optimization
problem seeks to minimize (or maximize) a single function f : RN → R over its
domain. That is, it attempts to compute

(1.1) min
x∈RN

f(x)

The function f is called the objective function.
Often it is desirable to restrict the domain by introducing additional constraints

on the vectors x over which we minimize f . When we do this, equation ?? becomes
what is called a constrained optimization problem. The formulation for the single-
objective constrained optimization problem is

(1.2) min
x∈C

f(x)

where
C = {x : h(x) = 0, g(x) ≤ 0}

is the set of equality and inequality constraints. If a vector x ∈ RN satisfies the
constraints of the problem, that is, if x ∈ C, then x is said to be a feasible solution
of ??. The set of all feasible solutions is called the feasible region, and the image
of the feasible region under f is called the objective space.

Single-objective constrained optimization problems are enticing because solution
methods are well-known and often only involve concepts from calculus. However in
many real-world scenarios, the single-objective approach proves inadequate. The
portfolio optimization problem is one such instance. When creating an investment
portfolio, the primary goal for investors is to maximize profit while minimizing
risk. Since the return and risk of any investment portfolio are closely interrelated,
investors need ways to balance the inherent risk-return trade-off.
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To accurately address the problem of portfolio optimization, we require multiple
objective functions. The multiple-objective constrained optimization problem can
be stated as

(1.3) min
x∈C

F (x) =


f1(x)
f2(x)

...
fN (x)

 for n ≥ 2,

where
C = {x : h(x) = 0, g(x) ≤ 0}.

In addition, we require that F : Rn → RN , h : Rn → RNe, and g : Rn → RNi

are twice continuously differentiable, where n denotes the number of variables, N
the number of objectives, and Ne and Ni the number of equality and inequality
constraints, respectively. Feasible solutions, the feasible region, and the objective
space are defined analogously to the single-objective problem. A solution x to the
multiobjective problem ?? is feasible if x ∈ C, the set of all such x ∈ Rn forms the
feasible region, and the image of the feasible region under F forms the objective
space, a subset of RN .

Since a single vector will not likely optimize each objective function simulta-
neously, we must introduce a way to measure the optimality of a solution across
multiple objective functions. This leads us to the following definition.

Definition. The vector F (x̂) is said to dominate the vector F (x̄) if and only if
fi(x̂) ≤ fi(x̄) for all i ∈ {1, 2, . . . , N} and fj(x̂) < fj(x̄) for some j ∈ {1, 2, . . . , N}.
A point x∗ ∈ C is said to be locally Pareto optimal if and only if there exists an open
neighborhood B(x∗) of x∗ such that F (x∗) dominates F (x) for all x ∈ B(x∗)∩C. If
F (x∗) dominates F (x) for all x ∈ C, then x∗ is said to be globally Pareto optimal.

Although finding a globally Pareto optimal point is favorable, most methods can
guarantee that a point is at most locally optimal. In this paper, we treat the
problem of portfolio optimization as a biobjective optimization problem, taking
risk and return as our objective functions.

2. Statement of the Problem

In the general biobjective portfolio optimization problem, we consider an investor
who is building a portfolio consisting of n assets, and we let {1, 2, ..., n} denote the
set of these assets. We assume that the investment period for each asset is one year,
and measure the return on a portfolio as the percentage change in capital over that
year. For this reason, we may assume that the total amount of capital to be invested
is equal to 1, and consider the allocation of capital among the different assets as
a percentage of capital. We further assume that the investor will distribute all of
his capital among the n assets. We define the allocation vector to be the vector
x = (x1, x2, ..., xn) ∈ Rn where xi denotes the percent of capital invested in asset i
for i = 1, 2, . . . , n. Since the investor has to allocate all of his available capital. we
obtain the constraint on that

∑n
i=1 xi = 1.

Let r = (r1, r2, ..., rn) ∈ Rn where ri is the mean yearly return for asset i over a
given period of time. To represent return as a function, we define

f1(x) = x · rT =
n∑

i=1

xiri.



MULTIOBJECTIVE OPTIMIZATION: PORTFOLIO OPTIMIZATION BASED ON GOAL PROGRAMMING METHODS3

This function tells us the expected return on a portfolio given an allocation vector.
To measure the risk of a portfolio, we consider the covariance matrix

V =

σ11 . . . σ1n

...
. . .

...
σn1 . . . σnn


where σij is the covariance of asset i and asset j, and σii is the variance of asset i.
Using this matrix, we can describe risk using the matrix product

f2(x) = x · V · xT =
n∑

i,j=1

xixjσij .

This equation denotes the percent of the total assets that are vulnerable to external
forces if i and j move together. When we calculate the covariance of an asset with
itself, we calculate the variance, which is a measurement of how far, on average,
the data of a set is away from the mean of the data. The greater the variance,
the riskier the asset. One important characteristic about the covariance matrix is
always positive semi-definite, meaning that x · V · xT ≥ 0 for all x ∈ Rn.

Then the biobjective portfolio optimization problem can be stated as

(2.1) min
x∈C

[
x · rT

x · V · xT

]
where C = {x ∈ Rn :

∑n
i=1 xi = 1, xi ≥ 0 for i = 1, 2, . . . , n}. Potential investors

must decide how to allocate capital among a variety of assets with varying lev-
els of risk and return. When the correlation between the values of two assets is
highly positive, the returns on these investments will move together. So we want
create a diversified portfolio consisting of several unrelated assets that yield high
levels of return. Ideally, this helps balance out the rise and fall of returns across
different markets by avoiding strong positive correlations between assets. Since
different investors are willing to accept varying amounts of risk, there is no single
optimal strategy. An individual investor’s optimal portfolio depends upon their
risk preferences.

Ultimately, we seek an optimal allocation of capital among potential investments,
including US government securities, various stocks, and gold. In this paper we
consider six such assets: US Treasury Bills (TBills), US Treasury Bonds (TBonds),
stocks in the NASDAQ Composite Index (NASDAQ), stocks in the Dow Jones
Index (DowJones), and stocks in the Standard & Poor 500 Index (S&P 500), and
gold. We observe annual return data for each asset from 1980-2011.

3. Goal Programming Methods

Since solution techniques to the single objective optimization problem are well-
known, one plausible way to solve the biobjective problem is to combine the two
objective functions into a single aggregate objective function that incorporates each
objective function in a meaningful way. However, there is no canonical way to build
such a function. We will examine two methods for generating the new objective
function in the following section, but we must first introduce the concept of goal
programming.

Goal programming methods work by fixing a goal value for each objective func-
tion and measuring the deviations of the values of the objective functions from
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their goal value over the feasible region. That is, instead of optimizing the ob-
jective functions, we choose a goal target value for each and then minimize the
difference between each function and its goal. Hence we are not optimizing the
functions themselves, but rather forcing them to be as close as possible to their
goal values. More formally, the biobjective optimization problem can be reformu-
lated into a goal programming problem by assigning to each fi a goal value gi and
minimizing the deviation (fi − gi)+ for i = 1, 2 over the feasible region, where +
refers to the positive part of the function.

For our problem, we define g1 = r∗, where r∗ denotes the desired level of return
on the portfolio, and let g2 = 0. We call the vector g = (r∗, 0) ∈ R2 the goal vector.
This is strictly ideal; we do not require that the goal vector lie in the objective
space. To achieve the necessary flexibility for investor preferences to be taken
into account, we also introduce a weight vector w = (w1, w2) ∈ R2 with w1, w2 ∈
(0, 1), such that w1 + w2 = 1. However as stated, this is still a multiobjective
problem; but the weighted sums of deviations and Chebyshev goal programming
methods provide ways to reduce our reformulated problem into a single objective
problem. Both methods can be generalized to the N -dimensional case, with goal
vector g = (g1, g2, . . . , gN ) ∈ RN and weight vector w = (w1, w2, . . . , wN ) such that
w1, w2, . . . , wN ∈ (0, 1) and

∑N
i=1 wi = 1.

3.1. Method 1: Weighted Sum of Deviations. The first method we consider
is the called the weighted sum of deviations (WSD) method. In general, the WSD
method is formulated as

min
x∈C

N∑
j=1

wj(fj(x)− gj)+

where C denotes the set of constraints defined in Equation ??. Here, the function

F =
N∑

j=1

wj(fj − gj)+

is the aggregate objective function mentioned previously.
Using the WDS method for the biobjective portfolio optimization problem, we

obtain the aggregate objective function F given by

F (x) = w1

([
n∑

i=1

xiri

]
− r∗

)+

+ w2

 n∑
i,j=1

xixjσij

+

= w1

([
n∑

i=1

xiri

]
− r∗

)+

+ w2

n∑
i,j=1

xixjσij

since V is positive semi-definite.
Then our original biobjective problem can be reformulated as

(3.1) min
x∈C

F (x),

where C = {x ∈ Rn :
∑n

i=1 xi = 1 and xi ≥ 0 for i = 1, 2, . . . , n}.
For the biobjective problem, the constraints w1 +w2 = 1 and w1, w2 ∈ (0, 1) on

the weight vector w = (w1, w2) imply that w2 = 1− w1, and hence we can rewrite
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w = (w1, 1 − w1) subject to the constrain that w1 ∈ (0, 1). Then it is easy to see
that the aggregate objective function becomes

F (x) = w1

([
n∑

i=1

xiri

]
− r∗

)+

+ (1− w1)
n∑

i,j=1

xixjσij .

That is, F is a convex combination of the functions |x · rT − r∗| and |x · V · xT |. So
we see that combining the two objective functions in this way yields a new curve
that is a weighted average of the deviations of each objective from its goal.

3.2. Method 2: Chebyshev Goal Programming. The Chebyshev goal pro-
gramming method uses essentially the same concepts as the WSD method, ex-
cept instead of minimizing the sum of deviations, we minimize only the maximum
weighted deviation of any function from its goal. Mathematically, we the Chebyshev
method is formulated as

min
x∈C

[
max

j
wj(fj(x)− gj)+

]
for j = 1, 2, . . . N,

taking C to be the same set of constraints as defined in Equation ??. In this
method, the aggregate objective function is

F = max
j

(wj |fj − gj |) for j = 1, 2, . . . , N.

In the Chebyshev method, the aggregate objective function for the portfolio
optimization problem is

F (x) = max{w1(f1 − r∗)+, w2(f2)+}

= max

w1

([
n∑

i=1

xiri

]
− r∗

)+

, w2

n∑
i,j=1

xixjσij


So the biobjective problem becomes

(3.2) min
x∈C

F (x),

where C = {x ∈ Rn :
∑n

i=1 xi = 1 and xi ≥ 0 for i = 1, 2, . . . , n}.
Here, instead of minimizing the weighted average of the deviations, as in the

WSD method, we minimize the largest deviation, bearing in mind that when the
largest deviation is minimized, the other deviation will be small as well.

4. A Fundamental Theorem

Until now, we have merely asserted that we can reformulate our biobjective
problem into a goal programming problem to generate an optimal solution. But we
must prove that an optimal solution to the goal programming problem is also an
optimal solution to the original problem. This leads us to the following theorem.
The general case is also true, but we restrict ourselves to the biobjective case.

Theorem. If x∗ is the unique minimizer for the goal programming problem, then
x∗ is a Pareto optimal point for the biobjective optimization problem ??.
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Proof. We will prove this theorem for the goal programming problem from the
WSD method. Assume that x∗ is the unique global minimizer of

(4.1) min
x∈C

[w1(x · rT − r∗)+ + w2(x · V · xT )]

and suppose that x∗ is not a global Pareto optimal point for the biobjective problem
(reference the biobjective problem). Then there exists a point x̄ ∈ C such that
either x̄ · rT < x∗ · rT or x̄ · V · x̄ < x∗ · V · x∗T . Hence we have that w1(x̄ · rT −
r∗)+ +w2(x̄ · V · x̄) < w1(x∗ · rT − r∗)+ +w2(x∗ · V · x∗T ). But this implies that x̄
is a global minimizer of ??, which is a contradiction. The case for the Chebyshev
method follows similarly. �

Although this theorem deals with global Pareto optimal points, the result holds
for local Pareto optimal points as well, and the proof follows similarly.

5. The Pareto Front

By varying our choices of w, we can generate a set called the Pareto optimal
curve or Pareto front. The Pareto front maps the relation between our two objective
functions. That is, we map variance versus expected return and by varying weights
we generate the Pareto curve. As we vary our choice of w we obtain a sequence of
optimal portfolios on the Pareto front ranging from the portfolio with the smallest
overall variance to the portfolio with the highest expected return. By generating
points on the Pareto front, we can approximate the actual Pareto optimal curve.
Once we have this approximation, the investor no longer has to consider the entire
objective space when choosing an optimal allocation vector, but only the portion
that is on the Pareto front.

The Pareto front occurs on the boundary of the objective space. When the
objective space is convex, we can often generate the entire Pareto front using the
methods we discussed here. However, if the objective space is not convex, then
these methods are not sufficient for generating the entire curve, and some Pareto
points will be missing. Other techniques have been developed for this case, and
other cases when traditional methods are not successful in generating the entire
curve. In (NBI) so and so talks about the Normal Boundary Intersection method,
which generate at least as much of the Pareto curve as the methods discussed in
this paper.

6. Results

Using the historic return data compiled in Appendix A, we created and worked
an example biobjective portfolio optimization problem to demonstrate the uses
of the two methods. For our particular problem, we elected to let n = 6, that
is we chose to have six assets between which to allocate our capital. We chose
T.Bills, T.Bonds, NASDAQ, Dow Jones, S&P500, Gold for our six assets. For
simplicity, we decided to use an even weighting, w = ( 1

2 ,
1
2 ), and we chose r∗ = 1.1,

a 10% return. In Mathematica, we entered the formulas for both methods and
evaluated the problem using the FindMinimum command on each function. For
a general standard of comparison, we also worked the problem twice using only
single objective functions to demonstrate the efficiency of the biobjective methods.
First we focused only on maximizing profit without regard to risk, that is finding
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min f1(x) − r∗, and then we focused only on minimizing risk without regard to
profit, min f2(x).

Using Mathematica we obtained the following scatter plots for the data. (The
code is included in Appendix B).

The results of our calculations using the biobjective methods are summarized in
the following tables:

For comparison, we juxtapose the two biobjective method results with those
obtained by taking either function to be the single objective and optimizing it
exclusively.
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By varying our choice of weight vector w, we obtained the following approxima-
tions for the Pareto front using both methods.
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7. Conclusion

The biobjective portfolio optimization problem highlights the difficulty that
arises in optimization problems with multiple objectives. We chose to treat the
problem as a function of only the allocation vector x, however we could reformulate
?? and ?? as a quadratic programming problem, taking x and w as variables. For
the WSD method, we get the aggregate objective function F : Rn × R2 → R given
by

F (x,w) = w1

([
n∑

i=1

xiri

]
− r∗

)+

+ w2

n∑
i,j=1

xixjσij .

Doing this we get the equivalent quadratic programming problem

(7.1) min
(x,w)∈C

F (x),

where C = {(x,w) ∈ Rn × R2 :
∑n

i=1 xi = 1, w1 + w2 = 1, xi ≥ 0 for i =
1, 2, . . . , n, and wj ≥ 0 for j = 1, 2}. In the Chebyshev method, we obtain the
quadratic programming problem

(7.2) min
(x,w)∈C

F (x),

where C = {(x,w) ∈ Rn × R2 :
∑n

i=1 xi = 1, w1 + w2 = 1, xi ≥ 0 for i =
1, 2, . . . , n, and wj ≥ 0 for j = 1, 2}. By viewing this as a quadratic problem, we
could simultaneously optimize in both w and x, giving the investor an even more
precise solution.

For our portfolio optimization problem, we used only yearly data for each asset.
However, the values of assets can vary a great deal over the course of a year. We
could modify our problem to incorporate data that gives a more accurate description
of how the value of each asset changes, and this would give us a more accurate model
for portfolio optimization. Another possible addition could include research into
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other types of assets, including options which are defined as a contract conveying
a right to buy or sell designated securities, commodities, or property interest at a
specified price during a stipulated period, for multi-year investments to maximize
returns.
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9. Appendix A

Table 1. This is a table of the historical return data we used in
constructing our example problem

Year T Bills T Bonds NASDAQ DowJones S&P 500 Gold
1980 1.1122 0.9701 1.3388 1.1493 1.2577 1.208
1981 1.143 1.082 0.9679 0.9077 0.9027 0.746
1982 1.1101 1.3281 1.1867 1.1961 1.1476 1.083
1983 1.0845 1.032 1.1987 1.2027 1.1727 0.876
1984 1.0961 1.1373 0.8878 0.9626 1.014 0.822
1985 1.0749 1.2571 1.3136 1.2766 1.2633 1.002
1986 1.0604 1.2428 1.0736 1.2258 1.1462 1.22
1987 1.0572 0.9504 0.9474 1.0226 1.0203 1.243
1988 1.0645 1.0822 1.1541 1.1185 1.124 0.861
1989 1.0811 1.1769 1.1926 1.2696 1.2725 0.978
1990 1.0755 1.0624 0.822 0.9566 0.9344 0.924
1991 1.0561 1.15 1.5684 1.2032 1.2631 0.955
1992 1.0341 1.0936 1.1545 1.0417 1.0446 0.927
1993 1.0298 1.1421 1.1475 1.1372 1.0706 1.145
1994 1.0399 0.9196 0.968 1.0214 0.9846 0.989
1995 1.0552 1.2348 1.3992 1.3345 1.3411 1.021
1996 1.0502 1.0143 1.2271 1.2601 1.2026 0.952
1997 1.0505 1.0994 1.2164 1.2264 1.3101 0.782
1998 1.0473 1.1492 1.3963 1.161 1.2667 1.01
1999 1.0451 0.9175 1.8559 1.2522 1.1953 0.968
2000 1.0576 1.1666 0.6071 0.9382 0.8986 0.972
2001 1.0367 1.0557 0.7895 0.929 0.8696 1.007
2002 1.0166 1.1512 0.6847 0.8324 0.7663 1.256
2003 1.0103 1.0038 1.5001 1.2532 1.2638 1.199
2004 1.0123 1.0449 1.0859 1.0315 1.0899 1.046
2005 1.0301 1.0287 1.0137 0.9939 1.03 1.178
2006 1.0468 1.0196 1.0952 1.1629 1.1362 1.232
2007 1.0464 1.1021 1.0981 1.0643 1.0353 1.319
2008 1.0159 1.201 0.5946 0.6616 0.6151 1.043
2009 1.0014 0.8888 1.4389 1.1882 1.2345 1.25
2010 1.0013 1.0846 1.1691 1.1102 1.1278 1.306
2011 1.0003 1.1604 0.982 1.0553 1.0 1.078
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H*Annual return data for each investment option in percents*L

tbills = 811.22, 14.30, 11.01, 8.45, 9.61, 7.49, 6.04, 5.72, 6.45,
8.11, 7.55, 5.61, 3.41, 2.98, 3.99, 5.52, 5.02, 5.05, 4.73, 4.51,
5.76, 3.67, 1.66, 1.03, 1.23, 3.01, 4.68, 4.64, 1.59, .14, .13, .03<;

tbonds = 8-2.99, 8.20, 32.81, 3.20, 13.73, 25.71, 24.28, -4.96, 8.22, 17.69,
6.24, 15.00, 9.36, 14.21, -8.04, 23.48, 1.43, 9.94, 14.92, -8.25, 16.66,
5.57, 15.12, .38, 4.49, 2.87, 1.96, 10.21, 20.10, -11.12, 8.46, 16.04<;

nasdaq = 833.88, -3.21, 18.67, 19.87, -11.22, 31.36, 7.36, -5.26, 15.41, 19.26,
-17.80, 56.84, 15.45, 14.75, -3.20, 39.92, 22.71, 21.64, 39.63, 85.59, -39.29,
-21.05, -31.53, 50.01, 8.59, 1.37, 9.52, 9.81, -40.54, 43.89, 16.91, -1.80<;

dowjones = 814.93, -9.23, 19.61, 20.27, -3.74, 27.66, 22.58, 2.26, 11.85, 26.96,
-4.34, 20.32, 4.17, 13.72, 2.14, 33.45, 26.01, 22.64, 16.10, 25.22, -6.18,
-7.10, -16.76, 25.32, 3.15, -0.61, 16.29, 6.43, -33.84, 18.82, 11.02, 5.53<;

sp500 = 825.77, -9.73, 14.76, 17.27, 1.40, 26.33, 14.62, 2.03, 12.40, 27.25,
-6.56, 26.31, 4.46, 7.06, -1.54, 34.11, 20.26, 31.01, 26.67, 19.53, -10.14,
-13.04, -23.37, 26.38, 8.99, 3.00, 13.62, 3.53, -38.49, 23.45, 12.78, 0.00<;

gold = 820.8, -25.4, 8.3, -12.4, -17.8, 0.2, 22.0, 24.3, -13.9,
-2.2, -7.6, -4.5, -7.3, 14.5, -1.1, 2.1, -4.8, -21.8, 1.0, -3.2,
-2.8, 0.7, 25.6, 19.9, 4.6, 17.8, 23.2, 31.9, 4.3, 25.0, 30.6, 7.8<;

H*Collective list of all data sets*L
data = 8tbills, tbonds, nasdaq, dowjones, sp500, gold<;

H*Converting the percents to positive decimals*L
For@i = 1, i £ Length@dataD, i++,

For@j = 1, j £ Length@data@@iDDD, j++,
If@data@@iDD@@jDD ³ 0, data@@iDD@@jDD = data@@iDD@@jDD � 100 + 1,

data@@iDD@@jDD = 1 + data@@iDD@@jDD � 100DDD;



H*Graphs of the returns of each
investment option relative to years after 1980*L

options = 8"T.Bills", "T.Bonds", "NASDAQ", "DowJones", "S&P500", "Gold"<;
For@i = 1; plots = 8<;

colors = 8Red, Blue, Green, Orange, Purple, Brown<, i £ Length@dataD, i++,
plots = Append@plots,

ListPlot@data@@iDD, PlotStyle ® colors@@iDD, AxesLabel ® 8"Years"
, "Return"<, PlotLabel ® options@@iDDDDD
Grid@Partition@plots, 3DD

H*Constructing a chart of the data by year*L
For@dates = 8<; i = 1, i £ 32, i++, dates = Append@dates, H1979 + iLDD;
Grid@Join@8Join@8""<, optionsD<, Join@8dates<, dataD �� TransposeD,

Frame ® All, Background ® 88Gray, None<, 8LightGray, None<<D

H*Constructing a second chart with the mean, variance and standard deviation*L
Grid@Transpose@Join@88"", "Mean", "Variance", "Standard Deviation"<<,

Transpose@Join@8options<, 8Mean@data �� TransposeD,
Variance@data �� TransposeD, StandardDeviation@data �� TransposeD<DDDD,

Frame ® All, Background ® 88Gray, None<, 8LightGray, None<<D
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T.Bills T.Bonds NASDAQ DowJones S&P500 Gold

1980 1.1122 0.9701 1.3388 1.1493 1.2577 1.208

1981 1.143 1.082 0.9679 0.9077 0.9027 0.746

1982 1.1101 1.3281 1.1867 1.1961 1.1476 1.083

1983 1.0845 1.032 1.1987 1.2027 1.1727 0.876

1984 1.0961 1.1373 0.8878 0.9626 1.014 0.822

1985 1.0749 1.2571 1.3136 1.2766 1.2633 1.002

1986 1.0604 1.2428 1.0736 1.2258 1.1462 1.22

1987 1.0572 0.9504 0.9474 1.0226 1.0203 1.243

1988 1.0645 1.0822 1.1541 1.1185 1.124 0.861

1989 1.0811 1.1769 1.1926 1.2696 1.2725 0.978

1990 1.0755 1.0624 0.822 0.9566 0.9344 0.924

1991 1.0561 1.15 1.5684 1.2032 1.2631 0.955

1992 1.0341 1.0936 1.1545 1.0417 1.0446 0.927

1993 1.0298 1.1421 1.1475 1.1372 1.0706 1.145

1994 1.0399 0.9196 0.968 1.0214 0.9846 0.989

1995 1.0552 1.2348 1.3992 1.3345 1.3411 1.021

1996 1.0502 1.0143 1.2271 1.2601 1.2026 0.952

1997 1.0505 1.0994 1.2164 1.2264 1.3101 0.782

1998 1.0473 1.1492 1.3963 1.161 1.2667 1.01

1999 1.0451 0.9175 1.8559 1.2522 1.1953 0.968

2000 1.0576 1.1666 0.6071 0.9382 0.8986 0.972

2001 1.0367 1.0557 0.7895 0.929 0.8696 1.007

2002 1.0166 1.1512 0.6847 0.8324 0.7663 1.256

2003 1.0103 1.0038 1.5001 1.2532 1.2638 1.199

2004 1.0123 1.0449 1.0859 1.0315 1.0899 1.046

2005 1.0301 1.0287 1.0137 0.9939 1.03 1.178

2006 1.0468 1.0196 1.0952 1.1629 1.1362 1.232

2007 1.0464 1.1021 1.0981 1.0643 1.0353 1.319

2008 1.0159 1.201 0.5946 0.6616 0.6151 1.043

2009 1.0014 0.8888 1.4389 1.1882 1.2345 1.25

2010 1.0013 1.0846 1.1691 1.1102 1.1278 1.306

2011 1.0003 1.1604 0.982 1.0553 1. 1.078

T.Bills T.Bonds NASDAQ DowJones S&P500 Gold

Mean 1.05136 1.09216 1.12736 1.09833 1.09379 1.04994

Variance 0.00116085 0.0109041 0.0761365 0.0225648 0.0280729 0.0243316

Standard
Deviation

0.0340712 0.104423 0.275928 0.150216 0.16755 0.155986
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H*Definitions of our objective functions, goals,
weights, and other variables we will need*L

H*The historical mean return value of each investment option*L
meanReturn = Mean@Transpose@dataDD;

H*The covariant matrix of our data with entry aij =

Covariance@option i, option jD and aii = Variance@option iD*L
covariants = Covariance@Transpose@dataDD;

H*A list of the variables representing the
percent each variable will have in our allocation*L

variables = Map@Subscript@x, ðD &, optionsD;

H*A list of our objective functions*L
f = 8variables.meanReturn, variables.covariants.variables< �� Simplify;

H*A list of our goals for each objective*L
g = 81.1, 0<;

H*A list of our weights for each objective*L
w = 8.5, .5<;

H*Our standard constraints: xi³0 for every x and that Úxi=1*L
constraints = Total@variablesD � 1 && Apply@And, Thread@Greater@variables, 0DDD;

H*The Weighted Sum of Deviations function is derived by taking a weighted
sum of the deviations of each objective function from its goal*L

weightedSum = Sum@Abs@Hf@@iDD - g@@iDDLD w@@iDD, 8i, 1, Length@fD<D �� Simplify;

H*The Chebyshev function is derived by finding the
maximum deviation of any objective function from its goal*L

chebyshev = Max@Table@Abs@Hf@@lDD - g@@lDDLD w@@lDD, 8l, 1, Length@fD<DD �� Simplify;
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H*This section is our calculations using the two different methods*L

H*

Weighted Sum of Deviations:
We combine our two objective functions into a weighted average of

their deviations from the goals using weights derived from our risk
preferences. We minimize this function using the original constraints.

*L
results2 = Quiet@FindMinimum@8weightedSum, constraints<, variablesDD;

H*

Chebyshev:
We create a new function to minimize by finding

the maximum deviation of any objective funtion from its
respective goal and attempting to minimize just this deviation.

*L
results3 = Quiet@FindMinimum@8chebyshev, constraints<, variablesDD;

H*Constructing a chart summarizing the
results of the calculations using the two methods*L

For@results = 8results2, results3<; resultsD = Table@8<, 8Length@resultsD<D;
j = 1, j £ Length@resultsDD, j++,
For@i = 1, i £ Length@variablesD, i++,

resultsD@@jDD = Append@resultsD@@jDD,
PaddedForm@Hvariables@@iDD �. results@@jDD@@2DD@@iDDL * 100, 84, 2<DD;DD

For@j = 1, j £ Length@resultsDD, j++,
For@i = 1, i £ Length@resultsD@@jDDD, i++,

resultsD@@jDD@@iDD = StringJoin@ToString@resultsD@@jDD@@iDDD, "%"DD;D
Grid@Join@8Join@8""<, options, 8"...", "Return", "Variance"<D<,

8Join@8"Weighted Sum"<, resultsD@@1DD, 8"..."<, f �. results@@1DD@@2DDD<,
8Join@8"Chebyshev"<, resultsD@@2DD, 8"..."<, f �. results@@2DD@@2DDD<D ��

Transpose, Frame ® All, Background ® 88Gray, None<, 8LightGray, None<<D

Weighted Sum Chebyshev

T.Bills 3.27% 18.02%

T.Bonds 53.96% 16.42%

NASDAQ 27.48% 14.94%

DowJones 6.47% 16.17%

S&P500 4.73% 16.36%

Gold 4.09% 18.09%

... ... ...

Return 1.09925 1.08369

Variance 0.00955972 0.00853878
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H*Pie Charts of each allocation*L
For@name = 8"Weighted Sum", "Chebyshev"<;

picharts = Table@8<, 8Length@resultsD<D; i = 1, i £ Length@resultsD, i++,
picharts@@iDD = PieChart@variables �. results@@iDD@@2DD,

ChartStyle ® 61, PerformanceGoal ® "Accuracy", ChartLegends ® options,
ChartLayout ® "Stacked", PlotLabel ® Style@name@@iDD, "Title", FontSize ® 14D,
LabelingFunction ® HPlaced@NumberForm@ð, 2D, "RadialCallout"D &LDD

Grid@Partition@picharts, 1DD
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0.18
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H*Single function versions*L
f1results = Quiet@FindMinimum@8Abs@f@@1DD - g@@1DDD, constraints<, variablesDD;
f2results = FindMinimum@8f@@2DD, constraints<, variablesD;

For@fresults = 8f1results, f2results<;
fresultsD = Table@8<, 8Length@fresultsD<D; j = 1, j £ Length@fresultsDD, j++,
For@i = 1, i £ Length@variablesD, i++,

fresultsD@@jDD = Append@fresultsD@@jDD,
PaddedForm@Hvariables@@iDD �. fresults@@jDD@@2DD@@iDDL * 100, 82, 2<DD;DD

For@j = 1, j £ Length@fresultsDD, j++,
For@i = 1, i £ Length@fresultsD@@jDDD, i++,

fresultsD@@jDD@@iDD = StringJoin@ToString@fresultsD@@jDD@@iDDD, "%"DD;D
Grid@Join@8Join@8""<, options, 8"...", "Return", "Variance"<D<,

8Join@8"min f1HxL - r*"<, fresultsD@@1DD, 8"..."<, f �. fresults@@1DD@@2DDD<,
8Join@8"min f2HxL"<, fresultsD@@2DD, 8"..."<, f �. fresults@@2DD@@2DDD<D ��

Transpose, Frame ® All, Background ® 88Gray, None<, 8LightGray, None<<D

min f1HxL - r* min f2HxL
T.Bills 12.00% 84.00%

T.Bonds 12.00% 3.20%

NASDAQ 39.00% 0.75%

DowJones 13.00% 0.28%

S&P500 12.00% 0.22%

Gold 12.00% 12.00%

... ... ...

Return 1.09669 1.05327

Variance 0.0198787 0.00069933

H*This cell plots the Pareto fronts for
Weighted Average and Chebyshev by varying weights*L

H*IT IS NOT EVALUATABLE.*L
experiment2@w1_D :=

Module@8<,
w = 8w1, 1 - w1<;
weightedSum = Sum@Abs@Hf@@iDD - g@@iDDLD w@@iDD, 8i, 1, Length@fD<D �� Simplify;
results2 = Quiet@FindMinimum@8weightedSum, constraints<, variablesDD;
f �. results2@@2DDD;

experiment3@w1_D :=

Module@8<,
w = 8w1, 1 - w1<;
chebyshev =

Max@Table@Abs@Hf@@lDD - g@@lDDLD w@@lDD, 8l, 1, Length@fD<DD �� Simplify;
Quiet@results3 = FindMinimum@8chebyshev, constraints<, variablesDD;
f �. results3@@2DDD;

ListPlot@Table@experiment2@iD, 8i, .001, .999, .001<D, PlotRange ® All,
PlotLabel ® "Weighted Sum of Deviations", AxesLabel ® 8"return", "risk"<D

ListPlot@Table@experiment3@iD, 8i, .001, .999, .001<D, PlotRange ® All,
PlotLabel ® "Chebyshev Goal Programming", AxesLabel ® 8"return", "risk"<D
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