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Sea Grant

Louisiana Sea Grant is an organization tasked with aiding in marine
and coastal life conservation, protection, and research

Sarah Bodenstein is a Postdoctoral Researcher in the oyster research
lab who is working with us to achieve our project goal

Figure: Oyster Farm(First two images from left), Oyster (Next two)
Oyster Team QOSUDL Spring 2025 2 / 30
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Introduction

Project Goals in Spring-2025: The goal of the project is to

• Count a total amount of oyster seeds (4-6 mm) from an image of
a Petri dish.

• Compare the results of our 4-6 mm model to the results of the
2-4mm models.

• Deploying the Pre-Trained Model on a system that can be used
by the end user.

Oyster Team QOSUDL Spring 2025 3 / 30
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Introduction-Seed Collection

Collection

• Oyster seeds are collected with a bottle and then are taken out
and put through filters that separate them by size

• The seeds are separated into 3 size categories: 0-2mm, 2-4mm,
and 4-6mm

Figure: Bottle and filtering process
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Annotations

Fiji and LabKit

• Our goal is to mark each individual seed in images with known
seed counts. We do this to train our code to become capable of
identifying each seed within an image

• To accomplish this, we used the LabKit software integrated within
Fiji.

Figure: Original Oyster Image(left), Partially Annotated Image (right)
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Augmentation

• Augmentation: In the context of machine learning and data
science, augmentation refers to the process of artificially expanding
a dataset by applying various transformations to the existing data.
These transformations may include rotations, flips, brightness
adjustments, scaling, cropping, and noise addition, among others.

• Purpose: The purpose of augmentation is to introduce variability
in the dataset, helping models learn to generalize better and
become less prone to overfitting, especially when the amount of
original data is limited.

Oyster Team QOSUDL Spring 2025 6 / 30
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Augmentation

To mitigate issues like data scarcity and model overfitting,
augmentation techniques can be classified into four categories:

• Absent Augmentation: No changes applied, providing a baseline
comparison.

• Basic Augmentation: Simple transformations, including
adjustments in brightness and contrast, to account for minor visual
variations.

• Intermediate Augmentation: Adds techniques like rotation,
flipping, and shifting to increase dataset diversity.

• Advanced Augmentation: Builds on prior methods, incorporating
zoom and shear transformations to introduce further variability.

Oyster Team QOSUDL Spring 2025 7 / 30
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Augmentation

• Intermediate Augmentation: (Rotation, Flipping, and Shifting)

▷ Offers a greater variety of images by introducing spatial
transformations.

▷ increases the model’s resilience to positional changes and
orientations,

▷ enhancing its ability to generalize.

Figure: Augmentation functions
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Stardist

Basics

• Uses a neural network, based on U-net, to identify star-convex
polygons

• Probabilities are obtained for each pixel saying how likely a pixel is
to be in a polygon

• Probabilities found using the neural network

• 32 radial directions measured from a pixel to the boundary of the
polygon

• Better at predicting cell shape than other image analysis methods

Figure: Star-Convex Polygons
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Stardist

Architecture

• U-net
• Convolutional neural network

• Post-processing
• Non-maximal suppression

Figure: U-net architechture
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Evaluation metrics
Training- Loss Functions

The loss function, a metric of the model’s accuracy, being minimized:

• L(p, p′
, r , r ′) = Lprob(p, p′) + p′Ldist(p, p′

, r , r ′) where (p,r) are the
predictions and (p’,r’) is the ground truth.

• Lprob(p, p′) = −p′ln(p) − (1 − p′)log(1 − p)

• Ldist(r , r ′) = 1
n

∑
k |rk − r ′

k |

Oyster Team QOSUDL Spring 2025 11 / 30
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Evaluation metrics
Training- Distance Loss(15 images)

Figure: Distance Loss(left), Probability Loss(right)

• The loss statistics are based on 15 images which is half of the
dataset, using an 80-20 train-test split.

• Training and validation plots are similar, and the loss flattens
around 50 epochs while still improving.

• Probability loss decreases from 0.6 to 0.2 with in the first 50
epochs.

• The training and validation loss differ by about 0.05, showing
consistent model performance.

Oyster Team QOSUDL Spring 2025 12 / 30
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Evaluation metrics
Training- Distance Loss(31 images)

Figure: Distance Loss(left), Probability Loss(right)

• The loss statistics are based on 31 images, using an 80-20
train-test split.

• Training and validation plots are similar, and the loss flattens
around 50 epochs.

• Probability loss decreases from 0.6 to 0.2 with in the first 50
epochs.

• The training and validation loss differ by about 0.05. We observed
overfitting in training.
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Evaluation Metrics-Results

Figure: True positive, False positives

Figure: True positive, False positive
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Evaluation Metrics-Tests & Results

• Precision = TP / (TP + FP)

• Recall = TP / (TP + FN)

• F1 = (2 × Precision × Recall) / (Precision + Recall)

• Accuracy = TP / (TP + FP + FN)

Oyster Team QOSUDL Spring 2025 15 / 30
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Evaluation metrics
Results

Figure: Precision, F1 score, Recall, Accuracy of two models- 15(Left),
31(Right)

• The model’s validation performance improves across all metrics as
training progresses in both models.

• Precision remains high throughout, proving that the models
consistently make correct detections.

• Accuracy and F1 Score show a steady upward trend, meaning
overall performance improves in both models.

• Left model(Validation accuracy-67%) and Right model(Validation
accuracy-76%)
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Accuracy rate of different sizes Oyster

• In Summer-2024, we have run the model for 2-4 mm oyster and
we got more than 95 percent accuracy.

• In Fall-2024, we have run the model for 0-2 mm oyster and we got
more than 81% accuracy.

• This time we run the model for 4-6 mm.

Oyster Team QOSUDL Spring 2025 17 / 30
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Results

• The best model gave 67% accuracy by taking half of the dataset.

• The model gave 76% accuracy with overfitting by taking the total
dataset.
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Model Performance

Figure: Model vs Manual counts

Model 2–4mm Acc% (MAE) 4–6mm Acc% (MAE) 4mm Acc% (MAE)
4-6mm_12_epochs_300 87.31% (10.12) 98.48% (1.0) 93.34% (2.0)
4-6mm_27_epochs_500 88.22% (9.62) 93.94% (4.0) 91.67% (2.4)
oyster-model-2-4mm-500 93.24% (5.12) 87.88% (8.0) 82.45% (5.8)
oyster_2-4mm (legacy) 93.24% (5.12) 87.88% (8.0) 82.45% (5.8)
oyster_4-6mm (legacy) 87.31% (10.12) 98.48% (1.0) 93.34% (2.0)

MAE = Mean Absolute Error (average absolute deviation in shell counts)
Oyster Team QOSUDL Spring 2025 19 / 30
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• Accuracy Definition: Accuracy = 100% – Mean Absolute
Percentage Error (MAPE).

• Best Models and Results:
2-4mm epochs 500: 93.24% accuracy, avg deviation 5.12 cells.
4-6mm epochs 300: 98.48% accuracy, avg deviation 1.0 cell.
4-6mm epochs 500: 93.34% accuracy, avg deviation 2.0 cells.

• Key Finding: Achieved approximately 98% accuracy for 4–6mm
oyster counting on the test dataset.

• Training Observation: Training beyond 300 epochs (e.g., at 500
epochs) led to reduced performance due to overfitting.
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GUI

Figure: GUI Prediction of Oyster Image(4-6mm)
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Deploying to End User Device

different hardware options we considered to deploy our pre-trained
modals and GUI

• ✓Designated Raspberry Pi Device

• Local deployment to hand held devices

• Deployment of a client-server solution

Figure: client-server
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Deploying to End User Device

We landed on the use of the Raspberry Pi for a few reasons:

• Compatibility with our software

• Widely available hardware and replacement parts

• Small form factor and “relatively” easy to make it into a portable
device

Figure: Raspberry Pi Implementation
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Deploying to End User Device

We worked with the GUI team to get the program running on the
Raspberry Pi

• Updated the code to improve responsiveness

• Implemented new features to allow for ease of use

• Testing of software on Raspberry Pi platform
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Additional Work

• designed and 3d-printed a housing for the Raspberry Pi

• Made a video tutorial for assembly of the Raspberry Pi

• Made a single file binary distribution for the Raspberry Pi

• bench-marked model performance on the Raspberry Pi

Figure: Raspberry Pi Implementation
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In the Future

• We aim to update and fix any errors still in the GUI.
• We aim to write comprehensive documentation for other people to

follow our work.
• We aim to update the 3d models fixing issues we encountered

while working.
• We intend to write an article based on our research on the Oyster

project.

Figure: 4-6 mm Oysters
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Figure: Sarah Bodenstein(Up), Previous Oyster Teams (Below)
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