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Abstract. To properly understand the behavior of the SIR model
we must first perform a complete stability analysis of the model.
This task includes finding the equilibrium points, the upper and
lower bounds of the System, and applying appropriate theorems
to determine local or global stability. We must also determine
whether the equilibrium point is asymptotically stable or simply
stable. For our model we found that the system is globally asymp-
totically stable.

1. Background Information

Consider the model

S ′(t) = Λ− βS 1

N
− µS

(1.1) I ′(t) = βS
1

N
− (µ+ γ)I

R′(t) = γI − µR,
where

(1.2) N(t) = S(t) + I(t) +R(t).

S, I, and R represent the densities of individuals subject to a disease
who are susceptible, infective, and removed, respectively, and N is the
population. Λ is a fixed number of individuals who join or arrive into
the susceptible class per unit, µ is the per capita death rate, and γ is
the per capita recovery rate. Given this information, we will perform
a complete stability analysis of 1.1.

2. Converting from Nonautonomous to Autonomous
Systems of Equations

To perform the stability analysis of System 1.1, we will employ an
autonomous system of equations instead of a nonautonomous system.
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Definition 2.1. A function f(x) satisfies a Lipschitz condition on the
interval I if there exitst a constant L such that |f(r)− f(s)| ≤ L|r− s|
for all r, s,∈ I. Any continuous function is uniformly bounded over a
finite integral f(r)− f(s) = f ′(ε)(r − s).

Definition 2.2. Consider the following systems:

(2.1)
d(X)

dt
= F (t,X)

(2.2)
d(Y )

dt
= G(X),

where F and G are continuous and locally Lipschitz in X and Y, re-
spectively, for all X and Y in Rn, and solutions exist globally. System
2.1 is called asymptotically autonomous with limit System 2.2 if
F (t,X)→ G(X) as t→∞ for X in Rn.

Theorem 2.3. If solutions of System 2.1 are bounded and the equi-
librium of X of System 2.2 is globally asymptotically stable, then any
solution X(t) of System 2.1 satisfies X(t)→ X as t →∞.

System 1.1 is clearly nonautonomous. Therefore, we must convert it
to a system of autonomous equations. To do this we must determine
if the system is bounded, so we must find the lower and upper bounds
of the equations.

2.1. Lower Bound. N(t) is the population at any given time. The
population of the system must always be positive because a negative
value for a population does not make sense. Therefore, N > 0. This
implies that S(t) > 0 and I(t) > 0 and R(t) ≥ 0. Thus, the lower
bound for S, I, and R is 0.

2.2. Upper Bound. We use Equation 1.2 yet again, this time taking
the derivative of each side. When we add the equations of System
1.1, we obtain the solution N ′(t) = Λ − µN(t). Then we simplify and
solve the differential equation for N. In doing so we obtain the solution
N = Λ

µ
+ c

eµt
. We are searching for the limit system, so we must take the

limit of the equation. Therefore, limt→∞(Λ
µ

+ c
eµt

) = Λ
µ

when t → ∞.
Consequently, N ≈ Λ

µ
for large values of t. Thus, System 1.1 has a limit

system. We know that S, I, and R are separately less than or equal to
N because their sum is equal to N. This implies that S ≤ Λ

µ
+ c

eµt
and

I ≤ Λ
µ

+ c
eµt

and R ≤ Λ
µ

+ c
eµt
. Therefore, the upper bound for S, I, and

R is Λ
µ

+ c
eµt
.
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2.3. Confirming Conversion to an Autonomous System. Now
that we have found the upper and lower bounds of the equations and
have solved the differential equations for N, we can apply Theorem
2.2. Thus, we may consider the autonomous limit system instead of
the original nonautonomous system.

3. Equilibrium Point

We now need to find the equilibrium points for these equations.

Definition 3.1. Given an equation dx
dt

= f(x), the point x∗ is an
equilibrium point if f(x∗) = 0.

We can get the equilibrium points by setting the equations in System
1.1 equal to zero and solving the system for S, I, and R. By doing so,
we obtain

S =
Λ2

µ(β + Λ)

I =
βΛ

(β + Λ) + (µ+ γ)

R =
γβΛ

µ(β + Λ)(µ+ γ)
.

We know that this is the only equilibrium point because the equation
for S is linear. Therefore, the equilibrium point is ( Λ2

µ(β+Λ)
, βΛ

(β+Λ)+(µ+γ)
,

γβΛ
µ(β+Λ)(µ+γ)

).

4. Reducing to a system of two equations

We next reduce the difficulty of performing the stability analysis by
reducing System 1.1 to fewer equations. This can be done, once again,
by employing Equation 1.2. We then substitute this into System 1.1
to obtain the new system of equations:

S ′ = Λ− βS

N
− µS,

I ′ =
βS

N
− (µ+ γ)I,

R′ = I(γ + µ)− µ(N − S).

It is clear that only two variables are listed in this system of three
equations. Therefore, the last equation, R′, may be disregarded.
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5. Stability Analysis

Now that we have simplified our system down to two Autonomous
equations, we can analyze the stability using the proper Lyapunov func-
tion.

Definition 5.1. A function V (x, y) is said to be positive definite
on a region D containing the origin if for all (x, y) 6= 0, V (x, y) > 0.
V (x, y) is said to be negative definite on a region D containing the
origin if for all (x, y) 6= 0, V (x, y) < 0.

Definition 5.2. A function V (x, y) is said to be a Lyapunov Func-
tion on an open region D if the function is continuous, positive definite,
and has continuous first-order partial derivatives on D.

The derivative of V with respect to the system dx
dt

= f(x, y) and
dy
dt

= g(x, y) is defined as

dV

dt
=
∂V

∂x

dx

dt
+
∂V

∂y

dy

dt
.

Theorem 5.3. If there exists a Lyapunov function V (x, y), dependent
on a system dx

dt
= f(x, y) and dy

dt
= g(x, y) with equilibrim point (x, y) =

(0, 0), and dV
dt

is negative definite on an open region D containing the
origin, then the zero solution of the system is asymptotically stable.

When D encompasses all possible values of (x, y) and follows all of
the specified criteria above, the projected stability of the system is said
to be global.

A possible Lyaponov function that is very common is V = x2 + y2.
We are interested in showing not only local, but global asymptotic sta-
bility. This means that our chosen V will have to satisfy the criteria
of a Lyaponov function over the entire region D = (0,∞)x(0,∞) for
which SxI is defined. This criteria includes

i) V (0, 0) = (0, 0)
ii) V (x, y) > 0 ∀ (x, y) 6= (0, 0) on D (positive definite).

However, this Lyapunov function only works for those systems with
an equilibrium point set at the origin, and as can be seen looking back
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at our specified region D, the origin is not included. This forces us to
use a change of variables in order to utilize the function V = x2 + y2.

We take

x = S − Λ2

µ(β + Λ)
,

y = I − βΛ

(β + Λ)(µ+ γ)
.

So

V = (S − Λ2

µ(β + Λ)
)2 + (I − βΛ

(β + Λ)(µ+ γ)
)2.

When redefining our D function for (x,y), it is shifted to the left, leav-

ing us with Ds = (− Λ2

µ(β+Λ)
,∞) × (− βΛ

(β+Λ)(µ+γ)
,∞), an open interval

including the origin.

We now check the derivative of our V function:

dV

dt
=
∂V

∂S

dS

dt
+
∂V

∂I

dI

dt

= 2(S− Λ2

µ(β + Λ)
)(Λ−βS 1

N
−µS)+2(I− βΛ

(β + Λ)(µ+ γ)
)(βS

1

N
−(µ+γ)I)

= −2[(
µ(β + Λ)

Λ2
)(S− Λ2

µ(β + Λ)
)2+(

(β + Λ)(µ+ γ)

βΛ
)(I− βΛ

(β + Λ)(µ+ γ)
)2].

The terms inside the brackets will only ever yield non-negative num-
bers since all of our terms are positive and the only portions containing
subtraction have been squared. So the overall sign of dV

dt
is determined

by the factor of -2 outside the brackets. Furthermore, the only point
that will make this equation equal to zero is the equilibrium point x=0,
y=0, which corresponds to the values S = Λ2

µ(β+Λ)
, I = βΛ

(β+Λ)(µ+γ)
. So

dV
dt

is negative definite in R2, which implies that dV
dt

is negative definite
on our specified interval D. Therefore, our system is globally asymp-
totically stable.
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