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ABSTRACT. For a system of first order linear difference equations,
y(k + 1) = Ay(k), Putzer’s algorithm computes the nxn coeffi-
cient matrix A raised to some k*" power, where k is a nonnegative
integer, by using the eigenvalues of A. The procedure is recur-
sive. Using the Z-transform, which removes recursions in differ-
ence equations, we redefine Putzer’s algorithm in a closed form via
the Z-transform.

1. INTRODUCTION

Given an n X n matrix A, let

be the column vector containing entries y(k), ...,y (k). The solution
to the system of equations with an initial condition

y(k+1) = Ay(k), y(0) =yo
y(k) = Afyy.

The struggle here is to compute A*. There are known methods includ-
ing transforming A into its Jordan Canonical Form, Fulmer’s Method,
and the use of Z-transforms on the matrix A itself. We use Putzer’s
Method which is a recursive algorithm using the eigenvalues of A. The
recursive nature of the algorithm becomes difficult when calculating A*,
where k is a large positive integer. Via the Z-transform, we rewrite
Putzer’s Method in a closed form. The first section reviews the Cayley-
Hamilton theorem and the Uniqueness and Existence theorem. Next
we cover Putzer’'s Method and the Z-transform. We conclude with

Putzer’s method redfined using the Z-transform.
1
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2. CAYLEY-HAMILTON AND THE EXISTENCE AND UNIQUENESS
THEOREMS

We state the following theorem without proof.

Theorem 1. Given an n xn matrix, A, define the characteristic poly-
nomaial as

pa(N) = det(A — \I).

Then the matriz A satisfies its own characteristic polynomial, that is,

A:[j g}

Its characteristic polynomaial is given by

Example 2. Define

pa(A) = det(A— )

B ‘2—)\ 3 ‘

Tl 45—

= 2-3M6-2-03)4)
= M -TA-2.

The Cayley-Hamilton theorem claims

pa(A) = A* —T7TA - 21 = 0.

Now
5 7 10 1 2 10
AT—Td=al = 15 22}_5[3 4}_2{0 1}
o [7 1] [5 10] [20
T 15 22) |15 20] [0 2
oo
0 0]°

A satisfies its characteristic polynomial.

The following theorem guarantees the existence and uniqueness of
solutions to the above system of difference equations.
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Theorem 3. For each ky € {a,a + 1,...} and each n-vector yo the
equation

y(k+1) = A(t)y(k) + f (k)
has a unique solution y(k) defined for k € {ko,ko + 1,...}, so that
y(ko) = yo-

Putzer’s Method, which will be discussed in the next section solves a
difference equation of the form y(k+ 1) = Ay(k), the solution of which
is given in the following theorem.

Theorem 4. The solution to the difference equation y(k+ 1) = Ay(k)
is given by y(k) = AFy,, where y(0) = yqy is the initial condition.

Proof. That a solution exists and is unique follows from Theorem 3.
Observe that

and inductively we see that y(k) = A*y(0).

3. PuTZER’S METHOD

Theorem 5. Given the system of first order linear difference equations
y(k + 1) = Ay(k) with the initial condition vector y(0) = yo and
ergenvalues listed as many times as their multiplicity Ay, ..., \,, then
the solution y(k) = A¥yq can be written in the form

n—1
y(k) = Z cit1(k)Miyo = Aty
i=0

where

and
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Proof. By the Caley-Hamilton theorem, A* can be written as a linear
combination of I, A, A%,... A" ! provided that A is an n x n matrix,
as we will now demonstrate. Given the characteristic polynomial

PaA(N) = ap A" F @ N L ao)® - ag ) +F a,
pa(A) = an A" + ap AV 4 A%+ a At agl =0

by the Cayley-Hamilton theorem. Now

Ap—1 _ a2 a1 Qo
At = At 22 T
Qp 0% 0% (07%

= p, A" b 4+ b3 AP+ b A+ Dy

This implies that every power of A can also be written as a linear
combination of I, A, A%, ..., A" since every power of A can be found
by multiplying the above equation successively by A and substituting
the representation of A™ into it to reduce the powers, as seen below.
Observe that
A"l = AAN

= b, A"+ ..+ b3 A3+ b AP+ b A

= by (b A" b3 A? £ by A+ bragd) + . A by AP+ b AT b A

= AV b A2 A+l

Let A1,..., A\, be the eigenvalues of A, with each eigenvalue repeated
as many times as its multiplicity. Let
MO - [

From the Cayley-Hamilton Theorem, we deduce that M, = 0, since

Mn = pA(A) =0.

The equation for the M; implies that each A* can be written as a linear
combination of My,..., M, since it simply contains powers of A. So
now we have
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for k > 0, where the ¢;1(k) are to be determined. Since A**! = AA*,

,_.

3
|

_

n—

I
o
-
Il
=)

=0
n—1 n—1

= Cz(]{?)MZ + Zci+1(k))\i+1Mi
i=1 =0

where we have replaced ¢ by ¢ —1 in the first sum and used the fact that
M, = 0. The preceding equation is satisfied if the ¢;(k), (i = 1,...,n)
are chosen to satisfy the system:

A 00 - 0
Cl(k + 1) 1 )\2 0 cee 0 Cl(k‘)
: {0 1 A5 - 0 :
cn(k+1) o s s Lea(R)
o -~ 0 1 X\,

Since A° =T = ¢1(0)] + ...+ ¢,(0)M,,_1, the system is subject to
the initial condition vector

From the matrix equation above, we can write the coefficients in the
form

cn(k + 1)‘: Ancn(k) + cn1 ().

Here we can see the amount of recursion needed to achieve the co-
efficients for the matrices M;. The recursion is tedious to work with.
Later in the paper we will discuss how to remove the recursion and
simplify the method using the Z-transform.

O



6 TYLER OTTO, CASEY TSAI, AND ANDREW WILSON

0 1

Example 6. Consider the matriz A = [_2 3

] . Use Putzer’s Algo-

rithm to give a formula for AF.
We begin by finding the characteristic polynomial, by finding
det(A — NI). This yields the equation

pa(A) = A+ 30 +2

which produces the eigenvalues \y = —1, Ay = —2. From the definition
of M;

MO - [
using Ay for the eigenvalue in the equation M; = (A — \;I)

My =(A+1)= [_12 _12]

Using the system described earlier we can get the coefficients for the
matrices My and M. Solving for the first coefficient yields
Cl(k + 1) = —101(k)

which has the solution ¢, (k) = (—1)*. Solving for the second coefficient
yields

Cg(k’ + 1) = —262( ) Cl<l{?)

which has the solution cz(k) = —(—=2)% + (—1)*. Plugging everything
into the formula for Putzer’s Method

AF = e; My + caM,
S P R CVaE e U] I
g v T
4. Z-TRANSFORM

The Z-transform of a function y(k) is defined as

206 =Y 1
n=0
where k € Z7.
We will utilize the following Z-transforms
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z

Z(a") =

z—a
An example of how we obtain these equations for the Z-transform
is shown here.

Example 7.

Now that we have rewritten our transform into something more famil-
tar, we can use the fact that

Zarkzlir

k=0

o0

when r < 1 and converges
So our transform is equal to,

We use the same approach in the previous example for the Z-transform
of a*,

2@z} = Y5

giving

Z(a*) = =

Z—a

5. APPLIED Z-TRANSFORM

The difference equation y(k+1) = Ay(k) has solution y(k) = A*y(0).
When we take the Z-transform of the solution we get Y (z) = Z(A*)y(0).
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If we take the Z-transform of the difference equation we get

Z(y(k+1)) = Z(Ay(k))
2Y (z) — zy(0) = AY (2)
2Y (z) — AY (2) = 2zy(0)
(= — LAY () = 2y(0)
V() = () (=1 ~ A)”

By equating our two forms of Y (z) we get
Z(A") = 2(21 — A~

Let Ay, - -+, A\, be the eigenvalues of A. Define a sequence of rational
functions C;(z) and matrices M; for 0 < i < n by

Co(z) =z

Cz(z) = Z(Z - )\i)fl . (Z _ )\n)il

and

MOII

M; = (A= X\I)-- (A= X\I)

Now that we have defined the above, we can find a formula for z(2] —
A)~!, the resolvent matrix.

Theorem 8. With C;(z) and M; defined as above

i
L

Z(Ak) - Z(ZI - A)il - Cz—l—l(Z)Mz

i

Il
o

Proof. We can denote R(z) to be the right hand side of the equation
stated above. It suffices to show that z7'(2I — A)R(z) = I. Observe

el = ACa ()M = 22 = A D) = (A = At D)) Cipa (2) M)
(2 = A1) Cin (2)M; — Ciga (2)(A = A D)
= 2 H(Ci(2)M; — Ciz1(2) Mita)
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where in the last line we have used that (A — \; 11)M; = M,;,; and
that (Z — )\1+1)CZ(Z) = CiJr]_(Z)- NOW,

2Nzl — A)R(z) = Z 2N zD — A)Cia(2) M;

= Y M~ O () My
= 2 1(Co(2)My — Cy(2)M,)

= z712I
= ]

where the sum telescoped and Cy(z) = z and M,, = 0 by the Cayley-
Hamilton theorem.
O

We now formulate the coefficients from Putzer’s Method via the Z-
transform, removing the need to solve them recursively.

Theorem 9.

AF = Zz_l( i1 ( Zchrl

Proof. Observe that we have taken the inverse Z-transform of the pre-
vious theorem. It suffices to show that

Z7(Cin(2)) = e (k).
Recall the original formulation of Putzer’s Method defined the coeffi-
cients according to
alk+1) = Ma(k), ¢(0)=1
Cz<k?+1> = /\iQ()"—Cz 1() (>—O, QSZSTZ
Taking the Z-transform,
201(2) — z¢1(0) = M\ C1(2)
(z—=XM)Ci(2) —2=0
Ci(z) =

z

(z— A1)

and
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2Ci(z) — 2¢;(0) = Ci—1 + NCi(2)
(2 = N)Ci(2) = Cia(2)
Ci(2) = (z — \)'Ci_1(2).
This is exactly how we defined the coefficients C;(z), therefore,
Z7HCia(2)) = cia (k).
O

We have eliminated the recursion from Putzer’s Method and replaced
it with taking the inverse Z-transforms of the coefficients. We conclude
with an example.

Example 10. Consider the system of equations y(k+1) = Ay(k) with

<[y -]

We begin by finding the characteristic polynomial

A 1

pAM:wA—Auzk; 2

‘ =A+1)(A+2)=0
quing
)\1 - —1,)\2 = —2.
Once we have the eigenvalues, we can find My and M,

10 I 1

Now we find the coefficients by using the Z-transform
b= (-
)
(z+1)(z+2)
1 1
=z 1 _
{z (z +1 z+ 2)}

= (-1)F = (-2)~.

Substituting into the equation from Putzer’s Method
Ak = Cl(k’)MQ + CQ(]{?)Ml

- (o [y ]+ -]l L))

z

k) = Z_l{z +1

CQ(k) = Z_l{
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Which leads us to our final solution

2-1)F = (=2)*  (=1)F - (-2)¥
—2(=1D)F +2(=2)F —(=1)* +2(—2)*
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