Legal Configurations of the 15-Puzzle

Andrew Chapple ${ }^{1}$ Alfonso Croeze ${ }^{1}$ Mhel Lazo ${ }^{1}$ Hunter Merrill ${ }^{2}$

${ }^{1}$ Department of Mathematics
Louisiana State University
Baton Rouge, LA
${ }^{2}$ Department of Mathematics
Mississippi State University Starkville, MS

August 24, 2010

History

- Invented in the 1860 s

History

- Invented in the 1860 s
- Puzzle description

History

- Invented in the 1860 s
- Puzzle description
- The object of the puzzle

History

- Invented in the 1860 s
- Puzzle description
- The object of the puzzle
- Sam Lloyd's challenge
15puzzleimg.png

History

- Invented in the 1860 s
- Puzzle description
- The object of the puzzle
- Sam Lloyd's challenge
- Our objective

Permutations

Definition

A permutation of a set A is a bijection from A onto itself.

Permutations

Definition

A permutation of a set A is a bijection from A onto itself.
We will denote the set of all permutations of n elements as S_{n}.

Permutations

Definition

A permutation of a set A is a bijection from A onto itself.
We will denote the set of all permutations of n elements as S_{n}.
Example
Consider the set $A=\{1,2,3,4,5,6\}$.

Permutations

Definition

A permutation of a set A is a bijection from A onto itself.
We will denote the set of all permutations of n elements as S_{n}.
Example
Consider the set $A=\{1,2,3,4,5,6\}$. Then the permutation P,

$$
P=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 1 & 5 & 2 & 3 & 6
\end{array}\right)
$$

changes 1 to 4 , 2 to 1,3 to 5,4 to 2,5 to 3 , and fixes, or leaves unchanged, the element 6 .

Cycle Notation

- Permutations can be more compactly written in cycle notation.

Cycle Notation

- Permutations can be more compactly written in cycle notation.
- Cycles are always read left to right.

Cycle Notation

- Permutations can be more compactly written in cycle notation.
- Cycles are always read left to right.
- The element 6 does not change and may be omitted.

Cycle Notation

- Permutations can be more compactly written in cycle notation.
- Cycles are always read left to right.
- The element 6 does not change and may be omitted.

Example

The cycle notation of

$$
P=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 1 & 5 & 2 & 3 & 6
\end{array}\right)
$$

Cycle Notation

- Permutations can be more compactly written in cycle notation.
- Cycles are always read left to right.
- The element 6 does not change and may be omitted.

Example

The cycle notation of

$$
P=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 1 & 5 & 2 & 3 & 6
\end{array}\right)
$$

is
$(142)(35)(6)$

Cycle Notation

- Permutations can be more compactly written in cycle notation.
- Cycles are always read left to right.
- The element 6 does not change and may be omitted.

Example

The cycle notation of

$$
P=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 1 & 5 & 2 & 3 & 6
\end{array}\right)
$$

is

$$
(142)(35)(6)
$$

or

$$
(142)(35)
$$

Disjoint Cycles

Definition
Cycles are disjoint if they have no common elements.

Disjoint Cycles

Definition
 Cycles are disjoint if they have no common elements.

- The two cycles which compose P are disjoint.

Disjoint Cycles

Definition
 Cycles are disjoint if they have no common elements.

- The two cycles which compose P are disjoint.
- Disjoint cycles are commutative.

Disjoint Cycles

```
Definition
Cycles are disjoint if they have no common elements.
```

- The two cycles which compose P are disjoint.
- Disjoint cycles are commutative.
- Nondisjoint cycles are not necessarily commutative:

Disjoint Cycles

Definition

Cycles are disjoint if they have no common elements.

- The two cycles which compose P are disjoint.
- Disjoint cycles are commutative.
- Nondisjoint cycles are not necessarily commutative:
- (1 2) (2 3) $=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$
- (2 3) (1 2) $=\left(\begin{array}{ll}3 & 2\end{array}\right)$

Disjoint Cycles

Definition

Cycles are disjoint if they have no common elements.

- The two cycles which compose P are disjoint.
- Disjoint cycles are commutative.
- Nondisjoint cycles are not necessarily commutative:
- (1 2) (2 3) =(1 $\left.\begin{array}{l}1 \\ 2\end{array}\right)$
- (2 3) (1 2) $=\left(\begin{array}{ll}3 & 2\end{array}\right)$

Example
Therefore, we can also write P as

$$
P=\left(\begin{array}{ll}
3 & 5
\end{array}\right)\left(\begin{array}{ll}
1 & 4
\end{array}\right)
$$

Transpositions

Definition
Cycles consisting of two elements are called transpositions.

Transpositions

Definition
 Cycles consisting of two elements are called transpositions.

Example
The transposition (35) can also be written as (53), as both have the effect of swapping the elements 3 and 5 .

Transpositions

Definition
 Cycles consisting of two elements are called transpositions.

Example
The transposition (35) can also be written as (53), as both have the effect of swapping the elements 3 and 5 .

- A transposition is its own inverse

Transpositions

Definition

Cycles consisting of two elements are called transpositions.

Example

The transposition (35) can also be written as (53), as both have the effect of swapping the elements 3 and 5 .

- A transposition is its own inverse
- $(35)(35)=(3)(5)=1$

Parity

Definition

A permutation is odd if it can be written as a product of an odd number of transpositions. Otherwise it is even.

Parity

Definition

A permutation is odd if it can be written as a product of an odd number of transpositions. Otherwise it is even.

Examples
(12)(3 4) is even.
$(12)(34)(56)$ is odd.

Parity

Definition

A permutation is odd if it can be written as a product of an odd number of transpositions. Otherwise it is even.

Examples
(12)(34) is even.
$(12)(34)(56)$ is odd.

- The set of all odd permutations of n elements is denoted by O_{n}

Parity

Definition

A permutation is odd if it can be written as a product of an odd number of transpositions. Otherwise it is even.

Examples
(12)(3 4) is even.
$(12)(34)(56)$ is odd.

- The set of all odd permutations of n elements is denoted by O_{n}
- The set of all even permutations of n elements is denoted by A_{n}

Parity Theorem

Theorem

If $\sigma \in S_{n}$, then σ may be written as the product of an even number of transpositions if and only if σ can not be written as the product of an odd number of transpositions.

Parity Theorem

Theorem

If $\sigma \in S_{n}$, then σ may be written as the product of an even number of transpositions if and only if σ can not be written as the product of an odd number of transpositions.

Lemma
The identity I, the permutation which fixes all elements, is even.

Proof of Parity Theorem

Proof.

Proof of Parity Theorem

Proof.

$$
\sigma=\tau_{1} \tau_{2} \cdots \tau_{s}=q_{1} q_{2} \cdots q_{t}
$$

Proof of Parity Theorem

Proof.

$$
\begin{aligned}
\sigma=\tau_{1} \tau_{2} \cdots \tau_{s} & =q_{1} q_{2} \cdots q_{t} \\
\tau_{1} \tau_{2} \cdots \tau_{s}\left(q_{1} q_{2} \cdots q_{t}\right)^{-1} & =q_{1} q_{2} \cdots q_{t}\left(q_{1} q_{2} \cdots q_{t}\right)^{-1}
\end{aligned}
$$

Proof of Parity Theorem

Proof.

$$
\begin{aligned}
\sigma=\tau_{1} \tau_{2} \cdots \tau_{s} & =q_{1} q_{2} \cdots q_{t} \\
\tau_{1} \tau_{2} \cdots \tau_{s}\left(q_{1} q_{2} \cdots q_{t}\right)^{-1} & =q_{1} q_{2} \cdots q_{t}\left(q_{1} q_{2} \cdots q_{t}\right)^{-1} \\
\tau_{1} \tau_{2} \cdots \tau_{s}\left(q_{1} q_{2} \cdots q_{t}\right)^{-1} & =I
\end{aligned}
$$

Proof of Parity Theorem

Proof.

$$
\begin{aligned}
\sigma=\tau_{1} \tau_{2} \cdots \tau_{s} & =q_{1} q_{2} \cdots q_{t} \\
\tau_{1} \tau_{2} \cdots \tau_{s}\left(q_{1} q_{2} \cdots q_{t}\right)^{-1} & =q_{1} q_{2} \cdots q_{t}\left(q_{1} q_{2} \cdots q_{t}\right)^{-1} \\
\tau_{1} \tau_{2} \cdots \tau_{s}\left(q_{1} q_{2} \cdots q_{t}\right)^{-1} & =I \\
\tau_{1} \tau_{2} \cdots \tau_{s} q_{t}^{-1} q_{t-1}^{-1} \cdots q_{1}^{-1} & =I
\end{aligned}
$$

Proof of Parity Theorem

Proof.

$$
\begin{aligned}
\sigma=\tau_{1} \tau_{2} \cdots \tau_{s} & =q_{1} q_{2} \cdots q_{t} \\
\tau_{1} \tau_{2} \cdots \tau_{s}\left(q_{1} q_{2} \cdots q_{t}\right)^{-1} & =q_{1} q_{2} \cdots q_{t}\left(q_{1} q_{2} \cdots q_{t}\right)^{-1} \\
\tau_{1} \tau_{2} \cdots \tau_{s}\left(q_{1} q_{2} \cdots q_{t}\right)^{-1} & =\downharpoonleft \\
\tau_{1} \tau_{2} \cdots \tau_{s} q_{t}^{-1} q_{t-1}^{-1} \cdots q_{1}^{-1} & =I \\
\tau_{1} \tau_{2} \cdots \tau_{s} q_{t} q_{t-1} \cdots q_{1} & =\boldsymbol{l}
\end{aligned}
$$

Proof of Parity Theorem

Proof.

$$
\begin{aligned}
\sigma=\tau_{1} \tau_{2} \cdots \tau_{s} & =q_{1} q_{2} \cdots q_{t} \\
\tau_{1} \tau_{2} \cdots \tau_{s}\left(q_{1} q_{2} \cdots q_{t}\right)^{-1} & =q_{1} q_{2} \cdots q_{t}\left(q_{1} q_{2} \cdots q_{t}\right)^{-1} \\
\tau_{1} \tau_{2} \cdots \tau_{s}\left(q_{1} q_{2} \cdots q_{t}\right)^{-1} & =\downharpoonleft \\
\tau_{1} \tau_{2} \cdots \tau_{s} q_{t}^{-1} q_{t-1}^{-1} \cdots q_{1}^{-1} & =I \\
\tau_{1} \tau_{2} \cdots \tau_{s} q_{t} q_{t-1} \cdots q_{1} & =\boldsymbol{l}
\end{aligned}
$$

The left hand side is a product of $s+t$ transpositions. Since Lemma 11 says that the identity on the right hand side is even, s and t must have the same parity.

Groups

A group is a combination of a set S and a binary operation $*$ that has the following properties:

Groups

A group is a combination of a set S and a binary operation $*$ that has the following properties:
(1) The set is non-empty

Groups

A group is a combination of a set S and a binary operation $*$ that has the following properties:
(1) The set is non-empty
(2) Closed under the operation

Groups

A group is a combination of a set S and a binary operation $*$ that has the following properties:
(1) The set is non-empty
(2) Closed under the operation
(3) Associative

Groups

A group is a combination of a set S and a binary operation $*$ that has the following properties:
(1) The set is non-empty
(2) Closed under the operation
(3) Associative
(9) Contains an identity

Groups

A group is a combination of a set S and a binary operation $*$ that has the following properties:
(1) The set is non-empty
(2) Closed under the operation
(3) Associative
(9) Contains an identity
(3) Contains an inverse for each element in the set

Groups

A group is a combination of a set S and a binary operation $*$ that has the following properties:
(1) The set is non-empty
(2) Closed under the operation
(3) Associative
(9) Contains an identity
(3) Contains an inverse for each element in the set

Examples

- The set of all integers under addition

Groups

A group is a combination of a set S and a binary operation $*$ that has the following properties:
(1) The set is non-empty
(2) Closed under the operation
(3) Associative
(4) Contains an identity
(5) Contains an inverse for each element in the set

Examples

- The set of all integers under addition
- The symmetric group S_{n} under composition

Groups

A group is a combination of a set S and a binary operation $*$ that has the following properties:
(1) The set is non-empty
(2) Closed under the operation
(3) Associative
(4) Contains an identity
(5) Contains an inverse for each element in the set

Examples

- The set of all integers under addition
- The symmetric group S_{n} under composition
- The alternating group A_{n} under composition

Cardinality

Definition

The cardinality of a set is the number of elements in the set.

Cardinality

Definition

The cardinality of a set is the number of elements in the set.

- $\left|S_{n}\right|=n!$

Cardinality

Definition

The cardinality of a set is the number of elements in the set.

- $\left|S_{n}\right|=n$!

Theorem
$\left|O_{n}\right|=\left|A_{n}\right|=\frac{n!}{2}$.

Introduce Puzzle

Permutations performed on the puzzle are performed on positions and not on contents.

Introduce Puzzle

Permutations performed on the puzzle are performed on positions and not on contents. The positions of our puzzle will be labeled like this:

4	3	2	1
5	6	7	8
12	11	10	9
13	14	15	16

The Path

Definition

A legal move consists of moving the blank space to an orthogonally adjacent position, called a neighbor.

The Path

Definition

A legal move consists of moving the blank space to an orthogonally adjacent position, called a neighbor.

- The moves along this path are legal.

Special Moves

There are special moves not along the path that are still legal. We will denote these moves $S_{i, j}$

Special Moves

There are special moves not along the path that are still legal. We will denote these moves $S_{i, j}$

Example

Special Moves

There are special moves not along the path that are still legal. We will denote these moves $S_{i, j}$

Example
$S_{11,14}$

Special Moves

There are special moves not along the path that are still legal. We will denote these moves $S_{i, j}$

Example

$$
S_{11,14}=(1615)(1514)(1413)(1312)(1211)(1114)(1415)(1516)
$$

Special Moves

There are special moves not along the path that are still legal. We will denote these moves $S_{i, j}$

Example

$$
\begin{aligned}
S_{11,14} & =(1615)(1514)(1413)(1312)(1211)(1114)(1415)(1516) \\
& =(16)(15)(14)(131211)
\end{aligned}
$$

Special Moves

There are special moves not along the path that are still legal. We will denote these moves $S_{i, j}$

Example

$$
\begin{aligned}
S_{11,14} & =(1615)(1514)(1413)(1312)(1211)(1114)(1415)(1516) \\
& =(16)(15)(14)(131211) \\
& =(131211)
\end{aligned}
$$

Nine Moves

The following are all the legal moves not along the path:

$$
\begin{aligned}
& S_{9,16}=\left(\begin{array}{l}
1514131211109)
\end{array}\right. \\
& S_{10,15}=\left(\begin{array}{ll}
14 & 131211
\end{array} 10\right) \\
& S_{11,14}=\left(\begin{array}{ll}
13 & 12 \\
11
\end{array}\right) \\
& S_{7,10}=\left(\begin{array}{ll}
9 & 7
\end{array}\right) \\
& S_{6,11}=(109876) \\
& S_{5,12}=(111098765) \\
& S_{1,8}=(7654321) \\
& S_{2,7}=\left(\begin{array}{ll}
6 & 5
\end{array}\right) \\
& S_{3,6}=\left(\begin{array}{ll}
5 & 4
\end{array}\right)
\end{aligned}
$$

Connections

Define the following set G,
$G=\{$ all possible configurations, with the blank space anywhere $\}$

Connections

Define the following set G,
$G=\{$ all possible configurations, with the blank space anywhere $\}$
For any configuration $P \in G$, define P^{\prime} to be the configuration where the blank in P has been snaked to position 16. In some cases, $P=P^{\prime}$. We will call P^{\prime} the standardization of P.

Connections

Define the following set G,
$G=\{$ all possible configurations, with the blank space anywhere $\}$
For any configuration $P \in G$, define P^{\prime} to be the configuration where the blank in P has been snaked to position 16. In some cases, $P=P^{\prime}$. We will call P^{\prime} the standardization of P.

Lemma
Fix $P_{1}, P_{2} \in G$ and consider P_{1}^{\prime} and P_{2}^{\prime}. Then, P_{1} can be changed to P_{2} via legal moves if and only if P_{1}^{\prime} can be changed to P_{2}^{\prime} via legal moves.

Set of Legal Moves

- Denote by $K \subset G$ as all configurations of the board for which the blank is in position 16.

Set of Legal Moves

- Denote by $K \subset G$ as all configurations of the board for which the blank is in position 16.
- Denote $L(K)$ as the set of all permutations of the form:

$$
\left(i_{k}=16 i_{k-1}\right)\left(i_{k-1} i_{k-2}\right) \cdots\left(i_{3} i_{2}\right)\left(i_{2} i_{1}\right)\left(i_{1} i_{0}=16\right)
$$

where i_{s} is a neighbor of i_{s+1} for $0 \leq s<k$

Set of Legal Moves

- Denote by $K \subset G$ as all configurations of the board for which the blank is in position 16.
- Denote $L(K)$ as the set of all permutations of the form:

$$
\left(i_{k}=16 i_{k-1}\right)\left(i_{k-1} i_{k-2}\right) \cdots\left(i_{3} i_{2}\right)\left(i_{2} i_{1}\right)\left(i_{1} i_{0}=16\right)
$$

where i_{s} is a neighbor of i_{s+1} for $0 \leq s<k$
Lemma
$L(K)$ is a group.

Proof that $L(K)$ is a group

Proof that $L(K)$ is a group

Proof.

(1) $L(K)$ is nonempty. As an example we have (16 15)(15 16)

Proof that $L(K)$ is a group

Proof.

(1) $L(K)$ is nonempty. As an example we have $(1615)(1516)$, which also happens to be the identity.

Proof that $L(K)$ is a group

Proof.

(1) $L(K)$ is nonempty. As an example we have $(1615)(1516)$, which also happens to be the identity.
(2) Given a permutation in $L(K)$, performing the permutation in reverse order yields its inverse.

Proof that $L(K)$ is a group

Proof.

(1) $L(K)$ is nonempty. As an example we have $(1615)(1516)$, which also happens to be the identity.
(2) Given a permutation in $L(K)$, performing the permutation in reverse order yields its inverse.
(3) Permutation composition is an associative binary operation.

Proof that $L(K)$ is a group

Proof.

(1) $L(K)$ is nonempty. As an example we have (16 15)(15 16), which also happens to be the identity.
(2) Given a permutation in $L(K)$, performing the permutation in reverse order yields its inverse.
(3) Permutation composition is an associative binary operation.
(9) Any permuation in $L(K)$ begins and ends with a transposition including position 16 , therefore compositions of elements of $L(K)$ will still be in $L(K)$.

- Every element of $L(K)$ is an even permutation.
- Every element of $L(K)$ is an even permutation.

E		E	
	E		E
E		E	
	E		E

- Every element of $L(K)$ is an even permutation.

E		E	
	E		E
E		E	
	E		E

- $L(K) \leq A_{n}$

Results

Lemma
Every element of A_{n} can be written as a product of cycles of the form $(k k+1 k+2)$.

Results

Lemma

Every element of A_{n} can be written as a product of cycles of the form $(k k+1 k+2)$.

$$
\begin{aligned}
(123) & =(1234567)^{-2}(345)(1234567)^{2} \\
(234) & =(1234567)^{-1}(345)(1234567) \\
(456) & =(1234567)^{-1}(567)(1234567) \\
(567) & =(567891011)^{-2}(789)(567891011)^{2} \\
(678) & =(567891011)^{-1}(789)(567891011) \\
(8910) & =(567891011)^{-1}(91011)(567891011) \\
(91011) & =(9101112131415)^{-2}(111213)(9101112131415)^{2} \\
(101112) & =(9101112131415)^{-1}(111213)(9101112131415) \\
(121314) & =(9101112131415)(111213)(9101112131415)^{-1} \\
(131415) & =(9101112131415)^{2}(111213)(9101112131415)^{-2}
\end{aligned}
$$

Tying it all Together

Since all permutations of the form $(k k+1 k+2)$ up to $k=13$ are legal, and since all permutations in A_{15} can be generated from $L(K)$,

Tying it all Together

Since all permutations of the form $(k k+1 k+2)$ up to $k=13$ are legal, and since all permutations in A_{15} can be generated from $L(K)$,

$$
A_{15} \leq L(K)
$$

Tying it all Together

Since all permutations of the form $(k k+1 k+2)$ up to $k=13$ are legal, and since all permutations in A_{15} can be generated from $L(K)$,

$$
\begin{aligned}
A_{15} & \leq L(K) \\
L(K) & \leq A_{15}
\end{aligned}
$$

Tying it all Together

Since all permutations of the form $(k k+1 k+2)$ up to $k=13$ are legal, and since all permutations in A_{15} can be generated from $L(K)$,

$$
\begin{aligned}
A_{15} & \leq L(K) \\
L(K) & \leq A_{15} \\
L(K) & =A_{15}
\end{aligned}
$$

Tying it all Together

Since all permutations of the form $(k k+1 k+2)$ up to $k=13$ are legal, and since all permutations in A_{15} can be generated from $L(K)$,

$$
\begin{aligned}
A_{15} & \leq L(K) \\
L(K) & \leq A_{15} \\
L(K) & =A_{15}
\end{aligned}
$$

Theorem

A given configuration of the 15-puzzle can be changed legally into another configuration if and only if the standardardized forms of the configurations can be transformed into each other by using an even permutation.

Tying it all Together

Since all permutations of the form $(k k+1 k+2)$ up to $k=13$ are legal, and since all permutations in A_{15} can be generated from $L(K)$,

$$
\begin{aligned}
A_{15} & \leq L(K) \\
L(K) & \leq A_{15} \\
L(K) & =A_{15}
\end{aligned}
$$

Theorem

A given configuration of the 15-puzzle can be changed legally into another configuration if and only if the standardardized forms of the configurations can be transformed into each other by using an even permutation.

- $\left|A_{15}\right|=\frac{15!}{2}=653,837,184,000$

15-14 Configuration

Sam Lloyd's configuration:

A	B	C	D
E	F	G	H
I	J	K	L
M	O	N	

15-14 Configuration

Sam Lloyd's configuration:

A	B	C	D
E	F	G	H
I	J	K	L
M	O	N	

Permutation required:
(14 15)

Reverse Configuration

Reverse order:

O	N	M	L
K	J	I	H
G	F	E	D
C	B	A	

Reverse Configuration

Reverse order:

O	N	M	L
K	J	I	H
G	F	E	D
C	B	A	

Permutation required:

$$
(154)(143)(132)(91)(105)(116)(127)
$$

1-Blank Configuration

1-blank:

	A	B	C
D	E	F	G
H	I	J	K
L	M	N	O

1-Blank Configuration

Standardize the configuration:

D	A	B	C
E	F	G	K
L	H	I	J
M	N	O	

1-Blank Configuration

Standardize the configuration:

D	A	B	C
E	F	G	K
L	H	I	J
M	N	O	

Permutation required:

$$
(129)(1210)(1110)(810)(21)(31)(41)
$$

