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Basics

Permutations

Definition

A permutation of a set A is a bijection from A onto itself.

We will denote the set of all permutations of n elements as Sn.

Example

Consider the set A = {1, 2, 3, 4, 5, 6}. Then the permutation P,

P =

(
1 2 3 4 5 6
4 1 5 2 3 6

)
changes 1 to 4, 2 to 1, 3 to 5, 4 to 2, 5 to 3, and fixes, or leaves
unchanged, the element 6.
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Basics

Cycle Notation

Permutations can be more compactly written in cycle notation.

Cycles are always read left to right.

The element 6 does not change and may be omitted.

Example

The cycle notation of

P =

(
1 2 3 4 5 6
4 1 5 2 3 6

)
is

(1 4 2)(3 5)(6)

or
(1 4 2)(3 5)
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Basics

Disjoint Cycles

Definition

Cycles are disjoint if they have no common elements.

The two cycles which compose P are disjoint.

Disjoint cycles are commutative.
Nondisjoint cycles are not necessarily commutative:

(1 2)(2 3)=(1 2 3)
(2 3)(1 2)=(3 2 1)

Example

Therefore, we can also write P as

P = (3 5)(1 4 2)
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Basics

Transpositions

Definition

Cycles consisting of two elements are called transpositions.

Example

The transposition (3 5) can also be written as (5 3), as both have the
effect of swapping the elements 3 and 5.

A transposition is its own inverse

(3 5)(3 5) = (3)(5) = I
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Basics

Parity

Definition

A permutation is odd if it can be written as a product of an odd number
of transpositions. Otherwise it is even.

Examples

(1 2)(3 4) is even.
(1 2)(3 4)(5 6) is odd.

The set of all odd permutations of n elements is denoted by On

The set of all even permutations of n elements is denoted by An
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Basics

Parity Theorem

Theorem

If � ∈ Sn, then � may be written as the product of an even number of
transpositions if and only if � can not be written as the product of an odd
number of transpositions.

Lemma

The identity I , the permutation which fixes all elements, is even.
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Basics

Proof of Parity Theorem

Proof.

� = �1�2 ⋅ ⋅ ⋅ �s = q1q2 ⋅ ⋅ ⋅ qt

�1�2 ⋅ ⋅ ⋅ �s(q1q2 ⋅ ⋅ ⋅ qt)
−1 = q1q2 ⋅ ⋅ ⋅ qt(q1q2 ⋅ ⋅ ⋅ qt)

−1

�1�2 ⋅ ⋅ ⋅ �s(q1q2 ⋅ ⋅ ⋅ qt)
−1 = I

�1�2 ⋅ ⋅ ⋅ �sq−1t q−1t−1 ⋅ ⋅ ⋅ q
−1
1 = I

�1�2 ⋅ ⋅ ⋅ �sqtqt−1 ⋅ ⋅ ⋅ q1 = I

The left hand side is a product of s + t transpositions. Since Lemma 11
says that the identity on the right hand side is even, s and t must have the
same parity.

Chapple, Croeze, Lazo, Merrill (LSU&MSU) 15-Puzzle August 24, 2010 9 / 25



Basics

Proof of Parity Theorem

Proof.

� = �1�2 ⋅ ⋅ ⋅ �s = q1q2 ⋅ ⋅ ⋅ qt

�1�2 ⋅ ⋅ ⋅ �s(q1q2 ⋅ ⋅ ⋅ qt)
−1 = q1q2 ⋅ ⋅ ⋅ qt(q1q2 ⋅ ⋅ ⋅ qt)

−1

�1�2 ⋅ ⋅ ⋅ �s(q1q2 ⋅ ⋅ ⋅ qt)
−1 = I

�1�2 ⋅ ⋅ ⋅ �sq−1t q−1t−1 ⋅ ⋅ ⋅ q
−1
1 = I

�1�2 ⋅ ⋅ ⋅ �sqtqt−1 ⋅ ⋅ ⋅ q1 = I

The left hand side is a product of s + t transpositions. Since Lemma 11
says that the identity on the right hand side is even, s and t must have the
same parity.

Chapple, Croeze, Lazo, Merrill (LSU&MSU) 15-Puzzle August 24, 2010 9 / 25



Basics

Proof of Parity Theorem

Proof.

� = �1�2 ⋅ ⋅ ⋅ �s = q1q2 ⋅ ⋅ ⋅ qt

�1�2 ⋅ ⋅ ⋅ �s(q1q2 ⋅ ⋅ ⋅ qt)
−1 = q1q2 ⋅ ⋅ ⋅ qt(q1q2 ⋅ ⋅ ⋅ qt)

−1

�1�2 ⋅ ⋅ ⋅ �s(q1q2 ⋅ ⋅ ⋅ qt)
−1 = I

�1�2 ⋅ ⋅ ⋅ �sq−1t q−1t−1 ⋅ ⋅ ⋅ q
−1
1 = I

�1�2 ⋅ ⋅ ⋅ �sqtqt−1 ⋅ ⋅ ⋅ q1 = I

The left hand side is a product of s + t transpositions. Since Lemma 11
says that the identity on the right hand side is even, s and t must have the
same parity.

Chapple, Croeze, Lazo, Merrill (LSU&MSU) 15-Puzzle August 24, 2010 9 / 25



Basics

Proof of Parity Theorem

Proof.

� = �1�2 ⋅ ⋅ ⋅ �s = q1q2 ⋅ ⋅ ⋅ qt

�1�2 ⋅ ⋅ ⋅ �s(q1q2 ⋅ ⋅ ⋅ qt)
−1 = q1q2 ⋅ ⋅ ⋅ qt(q1q2 ⋅ ⋅ ⋅ qt)

−1

�1�2 ⋅ ⋅ ⋅ �s(q1q2 ⋅ ⋅ ⋅ qt)
−1 = I

�1�2 ⋅ ⋅ ⋅ �sq−1t q−1t−1 ⋅ ⋅ ⋅ q
−1
1 = I

�1�2 ⋅ ⋅ ⋅ �sqtqt−1 ⋅ ⋅ ⋅ q1 = I

The left hand side is a product of s + t transpositions. Since Lemma 11
says that the identity on the right hand side is even, s and t must have the
same parity.

Chapple, Croeze, Lazo, Merrill (LSU&MSU) 15-Puzzle August 24, 2010 9 / 25



Basics

Proof of Parity Theorem

Proof.

� = �1�2 ⋅ ⋅ ⋅ �s = q1q2 ⋅ ⋅ ⋅ qt

�1�2 ⋅ ⋅ ⋅ �s(q1q2 ⋅ ⋅ ⋅ qt)
−1 = q1q2 ⋅ ⋅ ⋅ qt(q1q2 ⋅ ⋅ ⋅ qt)

−1

�1�2 ⋅ ⋅ ⋅ �s(q1q2 ⋅ ⋅ ⋅ qt)
−1 = I

�1�2 ⋅ ⋅ ⋅ �sq−1t q−1t−1 ⋅ ⋅ ⋅ q
−1
1 = I

�1�2 ⋅ ⋅ ⋅ �sqtqt−1 ⋅ ⋅ ⋅ q1 = I

The left hand side is a product of s + t transpositions. Since Lemma 11
says that the identity on the right hand side is even, s and t must have the
same parity.

Chapple, Croeze, Lazo, Merrill (LSU&MSU) 15-Puzzle August 24, 2010 9 / 25



Basics

Proof of Parity Theorem

Proof.

� = �1�2 ⋅ ⋅ ⋅ �s = q1q2 ⋅ ⋅ ⋅ qt

�1�2 ⋅ ⋅ ⋅ �s(q1q2 ⋅ ⋅ ⋅ qt)
−1 = q1q2 ⋅ ⋅ ⋅ qt(q1q2 ⋅ ⋅ ⋅ qt)

−1

�1�2 ⋅ ⋅ ⋅ �s(q1q2 ⋅ ⋅ ⋅ qt)
−1 = I

�1�2 ⋅ ⋅ ⋅ �sq−1t q−1t−1 ⋅ ⋅ ⋅ q
−1
1 = I

�1�2 ⋅ ⋅ ⋅ �sqtqt−1 ⋅ ⋅ ⋅ q1 = I

The left hand side is a product of s + t transpositions. Since Lemma 11
says that the identity on the right hand side is even, s and t must have the
same parity.

Chapple, Croeze, Lazo, Merrill (LSU&MSU) 15-Puzzle August 24, 2010 9 / 25



Basics

Proof of Parity Theorem

Proof.

� = �1�2 ⋅ ⋅ ⋅ �s = q1q2 ⋅ ⋅ ⋅ qt

�1�2 ⋅ ⋅ ⋅ �s(q1q2 ⋅ ⋅ ⋅ qt)
−1 = q1q2 ⋅ ⋅ ⋅ qt(q1q2 ⋅ ⋅ ⋅ qt)

−1

�1�2 ⋅ ⋅ ⋅ �s(q1q2 ⋅ ⋅ ⋅ qt)
−1 = I

�1�2 ⋅ ⋅ ⋅ �sq−1t q−1t−1 ⋅ ⋅ ⋅ q
−1
1 = I

�1�2 ⋅ ⋅ ⋅ �sqtqt−1 ⋅ ⋅ ⋅ q1 = I

The left hand side is a product of s + t transpositions. Since Lemma 11
says that the identity on the right hand side is even, s and t must have the
same parity.

Chapple, Croeze, Lazo, Merrill (LSU&MSU) 15-Puzzle August 24, 2010 9 / 25



Basics

Groups

A group is a combination of a set S and a binary operation ∗ that has the
following properties:

1 The set is non-empty

2 Closed under the operation

3 Associative

4 Contains an identity

5 Contains an inverse for each element in the set

Examples

The set of all integers under addition

The symmetric group Sn under composition

The alternating group An under composition
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Basics

Cardinality

Definition

The cardinality of a set is the number of elements in the set.

∣Sn∣ = n!

Theorem

∣On∣ = ∣An∣ = n!
2 .
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Puzzle

Introduce Puzzle

Permutations performed on the puzzle are performed on positions and not
on contents.

The positions of our puzzle will be labeled like this:

4 3 2 1

5 6 7 8

12 11 10 9

13 14 15 16
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Puzzle

The Path

Definition

A legal move consists of moving the blank space to an orthogonally
adjacent position, called a neighbor.

→ → →

↑ ← ← ←

→ → → ↑

↑ ← ← ←

The moves along this path are legal.
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Puzzle

Special Moves

There are special moves not along the path that are still legal. We will
denote these moves Si ,j

Example

S11,14 = (16 15)(15 14)(14 13)(13 12)(12 11)(11 14)(14 15)(15 16)

= (16)(15)(14)(13 12 11)

= (13 12 11)
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Puzzle

Nine Moves

The following are all the legal moves not along the path:

S9,16 = (15 14 13 12 11 10 9)

S10,15 = (14 13 12 11 10)

S11,14 = (13 12 11)

S7,10 = (9 8 7)

S6,11 = (10 9 8 7 6)

S5,12 = (11 10 9 8 7 6 5)

S1,8 = (7 6 5 4 3 2 1)

S2,7 = (6 5 4 3 2)

S3,6 = (5 4 3)
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Puzzle

Connections

Define the following set G ,

G = {all possible configurations, with the blank space anywhere}

For any configuration P ∈ G , define P ′ to be the configuration where the
blank in P has been snaked to position 16. In some cases, P = P ′. We
will call P ′ the standardization of P.

Lemma

Fix P1, P2 ∈ G and consider P ′1 and P ′2. Then, P1 can be changed to P2

via legal moves if and only if P ′1 can be changed to P ′2 via legal moves.
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Puzzle

Set of Legal Moves

Denote by K ⊂ G as all configurations of the board for which the
blank is in position 16.

Denote L(K ) as the set of all permutations of the form:

(ik = 16 ik−1)(ik−1 ik−2) ⋅ ⋅ ⋅ (i3 i2)(i2 i1)(i1 i0 = 16)

where is is a neighbor of is+1 for 0 ≤ s < k

Lemma

L(K ) is a group.

Chapple, Croeze, Lazo, Merrill (LSU&MSU) 15-Puzzle August 24, 2010 17 / 25



Puzzle

Set of Legal Moves

Denote by K ⊂ G as all configurations of the board for which the
blank is in position 16.

Denote L(K ) as the set of all permutations of the form:

(ik = 16 ik−1)(ik−1 ik−2) ⋅ ⋅ ⋅ (i3 i2)(i2 i1)(i1 i0 = 16)

where is is a neighbor of is+1 for 0 ≤ s < k

Lemma

L(K ) is a group.

Chapple, Croeze, Lazo, Merrill (LSU&MSU) 15-Puzzle August 24, 2010 17 / 25



Puzzle

Set of Legal Moves

Denote by K ⊂ G as all configurations of the board for which the
blank is in position 16.

Denote L(K ) as the set of all permutations of the form:

(ik = 16 ik−1)(ik−1 ik−2) ⋅ ⋅ ⋅ (i3 i2)(i2 i1)(i1 i0 = 16)

where is is a neighbor of is+1 for 0 ≤ s < k

Lemma

L(K ) is a group.

Chapple, Croeze, Lazo, Merrill (LSU&MSU) 15-Puzzle August 24, 2010 17 / 25



Puzzle

Proof that L(K ) is a group

Proof.

1 L(K ) is nonempty. As an example we have (16 15)(15 16) , which
also happens to be the identity.

2 Given a permutation in L(K ), performing the permutation in reverse
order yields its inverse.

3 Permutation composition is an associative binary operation.

4 Any permuation in L(K ) begins and ends with a transposition
including position 16, therefore compositions of elements of L(K ) will
still be in L(K ).
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Puzzle

Every element of L(K ) is an even permutation.

E E

E E

E E

E E

L(K ) ≤ An
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Puzzle

Results

Lemma

Every element of An can be written as a product of cycles of the form
(k k + 1 k + 2).

(1 2 3) = (1 2 3 4 5 6 7)−2(3 4 5)(1 2 3 4 5 6 7)2

(2 3 4) = (1 2 3 4 5 6 7)−1(3 4 5)(1 2 3 4 5 6 7)

(4 5 6) = (1 2 3 4 5 6 7)−1(5 6 7)(1 2 3 4 5 6 7)

(5 6 7) = (5 6 7 8 9 10 11)−2(7 8 9)(5 6 7 8 9 10 11)2

(6 7 8) = (5 6 7 8 9 10 11)−1(7 8 9)(5 6 7 8 9 10 11)

(8 9 10) = (5 6 7 8 9 10 11)−1(9 10 11)(5 6 7 8 9 10 11)

(9 10 11) = (9 10 11 12 13 14 15)−2(11 12 13)(9 10 11 12 13 14 15)2

(10 11 12) = (9 10 11 12 13 14 15)−1(11 12 13)(9 10 11 12 13 14 15)

(12 13 14) = (9 10 11 12 13 14 15)(11 12 13)(9 10 11 12 13 14 15)−1

(13 14 15) = (9 10 11 12 13 14 15)2(11 12 13)(9 10 11 12 13 14 15)−2
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Puzzle

Tying it all Together

Since all permutations of the form (k k + 1 k + 2) up to k = 13 are legal,
and since all permutations in A15 can be generated from L(K ),

A15 ≤ L(K )

L(K ) ≤ A15

L(K ) = A15

Theorem

A given configuration of the 15-puzzle can be changed legally into another
configuration if and only if the standardardized forms of the configurations
can be transformed into each other by using an even permutation.

∣A15∣ = 15!
2 = 653, 837, 184, 000
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Applications

15-14 Configuration

Sam Lloyd’s configuration:

A B C D

E F G H

I J K L

M O N

Permutation required:
(14 15)
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Applications

Reverse Configuration

Reverse order:

O N M L

K J I H

G F E D

C B A

Permutation required:

(15 4)(14 3)(13 2)(9 1)(10 5)(11 6)(12 7)
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Applications

1-Blank Configuration

1-blank:

A B C

D E F G

H I J K

L M N O
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Applications

1-Blank Configuration

Standardize the configuration:

D A B C

E F G K

L H I J

M N O

Permutation required:

(12 9)(12 10)(11 10)(8 10)(2 1)(3 1)(4 1)
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