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Abstract. The 15-puzzle has been an object of great mathemat-
ical interest since its invention in the 1860s. The puzzle has 16
square slots on a square board. The first 15 slots have square
pieces; the 16th slot is empty. The object of the puzzle is to slide
orthogonally the square pieces into the empty spot, thus rearrang-
ing the pieces and changing which slot is vacant, until the desired
configuration is obtained.

In 1878, famous puzzle maker Sam Lloyd swapped the 14th and
15th pieces and offered $1000 to the first person who could rear-
range them to form the standard starting position. This problem
contributed to the popularity of the puzzle as many attempted to
solve it. In this paper, we simplify the work of Archer in his 1999
paper [?] and analyze the puzzle through permutations to deter-
mine which positions can be obtained from the standard starting
position. We then evaluate specific positions, including Lloyd’s
famous challenge.

1. Basics

1.1. Permutations. A permutation of a set S is a bijection from S

onto itself. If the set we are permuting is A = {1, 2, . . . , n}, it is often
convenient to represent a permutation � as follows:

� =

(

1 2 3 ⋅ ⋅ ⋅ n

�(1) �(2) �(3) ⋅ ⋅ ⋅ �(n)

)

.

For instance, consider the set A = {1, 2, 3, 4, 5, 6}. Then the permuta-
tion �,

� =

(

1 2 3 4 5 6
4 1 5 2 3 6

)

,

sends 1 to 4, 2 to 1, 3 to 5, 4 to 2, 5 to 3, and fixes, or leaves unchanged,
the element 6.

The permutation above can be more compactly written in cycle no-
tation. We note that 1 becomes 4, which becomes 2, which becomes
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1; we express this as the cycle (1 4 2) (cycles are always read left to
right). Similarly, 3 becomes 5 which becomes 3, so we write that as
(3 5). The element 6 does not change, so that part of the permutation
is written simply as (6). Altogether, the cyclic description of � is

� = (1 4 2)(3 5)(6).

However, since the cycle (6) does not actually change anything, it may
be omitted:

� = (1 4 2)(3 5)

In this example the two cycles which compose � are disjoint, having no
common elements, and so they commute. Therefore, we can also write
� as

� = (3 5)(1 4 2).

In this paper, when nondisjoint cycles are to be performed in suc-
cession, the rightmost cycle is performed first. Cycles which consist
of only two elements, such as the cycle (3 5) in �, are referred to as
2-cycles, or more commonly, as transpositions. The transposition (3 5)
can also be written as (5 3), as both have the effect of swapping the
elements 3 and 5. Subsequently, any transposition is its own inverse.

Theorem 1.1. Every cycle may be written as a product of
transpositions.

Proof. Consider a cycle C,

C = (x1 x2 x3 x4 . . . xk−2 xk−1 xk)

where xi is an element of the set being permuted. Then C may be
expressed as

C = (x1 xk)(x1 xk−1) . . . (x1 x4)(x1 x3)(x1 x2).

To see that this works, note that x1 becomes x2 by the rightmost trans-
position. For all other xi, i < k, xi will become x1 by the transposition
(x1 xi), and it will subsequently become xi+1 by the next transposition,
(x1 xi+1). □

Refering back to our previous example, we consider the number of
possible permutations on the set A. Note that we have 6 choices for
the first element to which we want to assign an output, the numbers
1 to 6. The second element we examine has 5 possible outputs, since
we already assigned one of the numbers 1 to 6 to the first element
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and cannot repeat them. Continuing in this manner, there are thus
6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 = 6! = 720 permutations of the set A. Using a
similar method, it can be easily demonstrated that, given a set with n

elements, there are n! permutations of that set.

The set of all permutations of a set S = {1, 2, . . . , n} is called the
symmetric group on n letters, and is denoted Sn. We showed in the
previous paragraph that

∣Sn∣ = n!

Now, let us once again refer to our permutation �. Using the technique
of Theorem ??, we write � as

� = (1 4 2)(3 5) = (1 2)(1 4)(3 5).

Note that we used an odd number of transpositions to express �, and
thus call � an odd permutation. Any permutation which may be writ-
ten as the product of an odd number of transpositions is called odd;
otherwise, we call it even.
Sometimes, when working with Sn, we only want to consider permu-

tations of one parity. The set of odd permutations in Sn is denoted by
On, and the alternating group, or the set of even permutations in Sn,
is denoted by An.

A few more theorems are necessary.

Theorem 1.2. The identity I, the permutation which fixes all ele-
ments, is even.

(Grove, p.17). To show that the identity is even, we need to show
that it is not possible to write it as the product of an odd num-
ber of transpositions. Suppose, to the contrary, that we have done
so, 1 = (ab) ⋅ ⋅ ⋅ , using a minimal number of transpositions and with
the smallest possible number of a’s appearing. At least one more a

must appear, since 1a ∕= b, so suppose (ac) is the next one to the
right. Note that (de)(ac) = (ac)(de) if (de) and (ac) are disjoint and
(dc)(ac) = (ad)(cd), so we may move the second a to the left and write
1 = (ab)(af) ⋅ ⋅ ⋅ , with the same minimality conditions met. But now if
b = f we may reduce the number of transpositions by 2, and if b ∕= f ,
then (ab)(af) = (af)(bf) and we may reduce the number of a’s, in
both cases a contradiction. □
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Theorem 1.3. If � ∈ Sn, then � may be written as the product of an
even number of transpositions if and only if � can not be written as the
product of an odd number of transpositions.

Proof. Suppose � can be written as a product of transpositions in two
ways. Then we may write:

� = �1�2 ⋅ ⋅ ⋅ �s = q1q2 ⋅ ⋅ ⋅ qt

Multiply both sides by the inverse of the right hand side,

�1�2 ⋅ ⋅ ⋅ �s(q1q2 ⋅ ⋅ ⋅ qt)
−1 = q1q2 ⋅ ⋅ ⋅ qt(q1q2 ⋅ ⋅ ⋅ qt)

−1

�1�2 ⋅ ⋅ ⋅ �s(q1q2 ⋅ ⋅ ⋅ qt)
−1 = I

�1�2 ⋅ ⋅ ⋅ �sq
−1
t q−1

t−1 ⋅ ⋅ ⋅ q
−1
1 = I

�1�2 ⋅ ⋅ ⋅ �sqtqt−1 ⋅ ⋅ ⋅ q1 = I

The left hand side is a product of s+t transpositions. Since Theorem ??

showed that the identity on the right hand side is even, s and t must
have the same parity.

□

Theorem 1.4. ∣On∣ = ∣An∣ =
n!

2
.

Proof. Fix � ∈ Sn. Let f(�) = (1 2)� Note that

f(�) ∈

{

An if � ∈ On

On if � ∈ An.

Consider any �1, �2 ∈ Sn. If f(�1) = f(�2), then

(1 2)�1 = (1 2)�2

(1 2)(1 2)�1 = (1 2)(1 2)�2

�1 = �2

Therefore, f is injective.
Now consider any �2 ∈ Sn. Then since

f((1 2)�2) = (1 2)(1 2)�2 = �2,

we have that f is surjective.

Since f is injective and surjective, f is bijective.
This means that every �1 ∈ An can be mapped to exactly one �2 ∈

On. Likewise, every element of On is mapped to exactly one element
of An. Therefore,

∣On∣ = ∣An∣
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By Theorem ??, every element in Sn belongs to exactly one of An or
On. So,

∣On∣+ ∣An∣ = ∣Sn∣

2∣An∣ = ∣Sn∣

∣An∣ =
∣Sn∣

2
=

n!

2
□

1.2. Groups. A group is a combination of a set S and a binary oper-
ation ∗ that has the following properties:

(1) The set is non-empty.
(2) The set is closed under the operation; the result of the operation

on any two elements of the set must be another element in the
set.

(3) The set is associative: (a ∗ b) ∗ c = a ∗ (b ∗ c).
(4) The set contains an identity (denoted by I, Id or e) that fixes

any element � ∈ S.
(5) The set must contain an inverse for each element in the set;

for any � ∈ S, there exists another element �′ ∈ S such that
� ∗ �′ = �′ ∗ � = I.

Examples of groups include the integers under addition, Sn, and An.

A subset H of a group G is called a subgroup of G if the operation on
G restricts to a binary operation on H under which H is itself a group.

2. The Puzzle

Before an analysis of the 15-puzzle can be accomplished, we must
specify that the permutations of the puzzle are performed on the po-
sitions of the puzzle, rather than the contents of the positions. That
is, a transposition (1 2) will swap the contents of positions 1 and 2,
rather than swapping contents labeled 1 and 2. The positions of our
15-puzzle will be labeled like this:

4 3 2 1

5 6 7 8

12 11 10 9

13 14 15 16
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This labeling follows a specific path from position 1 to the position
16 that will be called the “snake” path for the remainder of this paper.
The contents of the positions of our 15-puzzle will be labeled us-

ing letters to avoid some confusion (note that, as we are permutating
positions, the actual labels of the contents do not matter):

A B C D

E F G H

I J K L

M N O

This configuration will be called the “initial” configuration for the re-
mainder of the paper. As an example, if one wanted to swap F and J,
the transposition required to do so is (6 11).
Define the following set:

G = {all possible configurations, with the blank space anywhere}

For any configuration P ∈ G, define P ′ to be the configuration where
the blank in P has been snaked to position 16. In some cases, P = P ′.
We will call P ′ the standardization of P .

Lemma 2.1. Fix P1, P2 ∈ G and consider P ′

1 and P ′

2. P1 can be
changed to P2 via legal moves if and only if P ′

1 can be changed to P ′

2

via legal moves.

Proof. First, assume P ′

1 can be changed to P ′

2. Then, we can change
P1 to P2 by changing P1 to P ′

1, P
′

1 to P ′

2, and then P ′

2 to P2. Similarly,
if we assume that the change from P1 to P2 is possible, then we can
change P ′

1 to P ′

2 by changing P ′

1 to P1, P1 to P2, and then P ′

2 to P2. □

This lemma may seem trivial, but it in fact greatly reduces the num-
ber of board configurations which need to be evaluated as we may now
consider only configurations in G for which the blank is in position
16. Denote by K ⊂ G all configurations of the board for which the
blank is in position 16. We note that legal moves consist of transposing
the position the blank occupies with one of the orthogonally adjacent
positions, which we call neighbors. Since we are considering only con-
figurations in K, our blank must start and end at position 16. So our
legal moves, denoted L(K) are permutations of the form:

(ik = 16 ik−1)(ik−1 ik−2) ⋅ ⋅ ⋅ (i3 i2)(i2 i1)(i1 i0 = 16)

where is is a neighbor of is+1 for 0 ≤ s < k

Lemma 2.2. L(K) is a group.
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Proof. We will show that L(K) fulfills all the properties of a group:

(1) L(K) is nonempty. As an example we have (16 15)(15 16),
which also happens to be the identity.

(2) Given a permutation in L(K), performing the permutation in
reverse order yields its inverse.

(3) Permutation composition is an associative binary operation.
(4) Any permuation in L(K) begins and ends with a transposi-

tion including position 16, therefore compositions of elements
of L(K) will still be in L(K).

□

Lemma 2.3. L(K) ≤ A15.

Proof. Going from one configuration to another, we had to move the
blank space around, but we always returned it to 16. If we moved
it left, we always had to move it back right; if we moved it up, we
always had to move it back down. As a result, we always used an
even number of swaps to change configurations; therefore, we used an
even number of transpositions. This tells us that no odd permutation
could ever describe a configuration legally obtained from the initial
configuration. Of all the permutations in S15, only those in A15 are
potentially possible. Therefore, L(K) ⊆ A15. Since we have already
shown that L(K) is a group, it immediately follows that L(K) ≤ A15.

□

There are legal moves, associated with nine transpositions, which
swap two tiles not along the snaked path.
For example, we want to determine how the move associated with

(11 14) changes the board. Starting with the blank at 16, we move it
along the snake until we reach the first position used in the transposi-
tion (in this case, 14), perform the transposition, then move the blank
along the path back to 16; the blank’s path is 16, 15, 14, 11, 12, 13,
14, 15, 16. Continuing in this way, we get the permutation:

(16 15)(15 14)(14 13)(13 12)(12 11)(11 14)(14 15)(15 16) = (13 12 11)

This permutation is clearly an element of L(K), and we denote it by
S11,14. The others are listed below.
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S9,16 = (15 14 13 12 11 10 9)

S10,15 = (14 13 12 11 10)

S11,14 = (13 12 11)

S7,10 = (9 8 7)

S6,11 = (10 9 8 7 6)

S5,12 = (11 10 9 8 7 6 5)

S1,8 = (7 6 5 4 3 2 1)

S2,7 = (6 5 4 3 2)

S3,6 = (5 4 3)

Note that

S−1
9,16 = (9 10 11 12 13 14 15)

S−1
10,15 = (10 11 12 13 14)

...

S−1
3,6 = (3 4 5)

3. The Result

When moving the tiles around the board, we were working in S16

since there are 16 total squares whose contents we were changing. How-
ever, because we only considered configurations where the blank was
in 16, we never changed the contents of 16 in going from one configu-
ration to another; since we effectively fixed 16, we were really working
in S15. By Lemma ??, we showed that only even permutations, i.e. the
permutations in A15, are possible. But which ones?
The following two theorems will help address this question.

Theorem 3.1. Every element of Sn may be written as a product of
transpositions of the form (k k + 1).

Proof. Choose � ∈ Sn and select transpositions �1, . . . �k (possibly by
using the technique shown in Theorem ??) such that

� = �1�2�3 . . . �k

Every �i can be written in the following way:
For each �i, we may write for distinct k, l ∈ 1, 2, . . . , n �i = (k l).

Since (k l) = (l k), we assume WLOG that k < l. Then,
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�i = (k l)

which we may then expand to get

�i = (k k+1)(k+1 k+2) ⋅ ⋅ ⋅ (l−1 l)(l−2 l−1) ⋅ ⋅ ⋅ (k+1 k+2)(k k+1)

Repeating this for i = 1, 2, . . . , k we get � as a product of adjacent
transpositions. □

Theorem 3.2. Every element of An can be written as a product of
cycles of the form (k k + 1 k + 2).

Proof. From Theorem ??, we found that every permutation can be
written as a product of adjacent transpositions of the form

(k k + 1)(k + 1 k + 2) ⋅ ⋅ ⋅ (l− 1 l)(l − 2 l − 1) ⋅ ⋅ ⋅ (k + 1 k + 2)(k k + 1)

Focusing on two “side-by-side” adjacent transpositions at a time, we
find the following three cases:

(1) (k k + 1)(k + 1 k + 2)
(2) (k + 1 k + 2)(k k + 1)
(3) (a a+ 1)(b b+ 1) where {a, a+ 1} ∩ {b, b+ 1} = ∅

We may rewrite the first two cases as follows:

(1) (k k + 1)(k + 1 k + 2) = (k k + 1 k + 2)
(2) (k + 1 k + 2)(k k + 1) = (k k + 2 k + 1)

For the third case, we assume WLOG (since disjoint permutations
commute) that a < b. Then we may rewrite (a a + 1)(b b+ 1) as

(a a+ 1)(a+ 1 a + 2)(a+ 1 a + 2) ⋅ ⋅ ⋅ (b− 1 b)(b− 1 b)(b b+ 1).

Since (a a+1)(b b+1) is an even permutation, the permutation above
on the right side will have an even number of transpositions. We may
then use the first case to rewrite the transpositions as needed.
Since elements of An use an even number of adjacent transpositions,

no transposition is omitted when we combine them in such a way.
Therefore, every element of An can be written as a product of cycles
of the forms

(k k + 1 k + 2) or (k k + 2 k + 1).

However, since

(k k + 1 k + 2) = (k k + 2 k + 1)2

all elements can actually be written using only the form
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(k k + 1 k + 2).

□

So, we wish to show that all cycles of the form (k k+1 k+2) can be
formed using the nine vertical transpositions presented earlier. Note
that we already have (3 4 5), (7 8 9), and (11 12 13) as inverses of
cycles formed from three of the transpositions. The other necessary
cycles are listed here.

(1 2 3) = (1 2 3 4 5 6 7)−2(3 4 5)(1 2 3 4 5 6 7)2

(2 3 4) = (1 2 3 4 5 6 7)−1(3 4 5)(1 2 3 4 5 6 7)

(4 5 6) = (1 2 3 4 5 6 7)−1(5 6 7)(1 2 3 4 5 6 7)

(5 6 7) = (5 6 7 8 9 10 11)−2(7 8 9)(5 6 7 8 9 10 11)2

(6 7 8) = (5 6 7 8 9 10 11)−1(7 8 9)(5 6 7 8 9 10 11)

(8 9 10) = (5 6 7 8 9 10 11)−1(9 10 11)(5 6 7 8 9 10 11)

(9 10 11) = (9 10 11 12 13 14 15)−2(11 12 13)(9 10 11 12 13 14 15)2

(10 11 12) = (9 10 11 12 13 14 15)−1(11 12 13)(9 10 11 12 13 14 15)

(12 13 14) = (9 10 11 12 13 14 15)(11 12 13)(9 10 11 12 13 14 15)−1

(13 14 15) = (9 10 11 12 13 14 15)2(11 12 13)(9 10 11 12 13 14 15)−2

We have shown that all permutations of the form (k k+1 k+2) are
possible, and since we know from Theorem ?? that all permutations in
An can be generated from those permutations, we have in fact shown
that all permutations in A15 can be legally obtained: that is, L(k) =
A15.
However, the initial configuration does not have to be the “normal”

starting configuration we included earlier; it could be any standard
configuration. But, by Lemma ??, we know that any configuration can
be changed to an equivalent standard configuration. We can therefore
state our result as follows.

Theorem 3.3. A given configuration of the 15-puzzle can be changed
legally into another configuration if and only if the standardardized
forms of the configurations can be transformed into each other by an
even permutation.

Thus, by Theorem ??, there are 15!

2
= 653, 837, 184, 000 legal stan-

dard configurations.
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4. Applications

One configuration worth mentioning is the configuration in which the
contents of the positions are placed in reverse order. In keeping with
the definition above in which the positions are labeled in consecutive
order along the “snake” and the contents of each position are labeled
in consecutive order following the traditional left-to-right and top-to-
bottom scheme, the change from the initial position to the reverse-order
configuration would look like this:

O N M L

K J I H

G F E D

C B A

To attain this configuration, the contents of the 4 and 15 positions
must be swapped, the 3 and 14, etc. This move can be written as a
product of transpositions:

(15 4)(14 3)(13 2)(9 1)(10 5)(11 6)(12 7)

This configuration requires an odd number of transpositions and is
thus impossible to obtain from the starting configuration using only
legal moves. Conversely, no legal configurations are attainable from
this configuration using only legal moves.
Now let us examine Sam Lloyd’s configuration:

A B C D

E F G H

I J K L

M O N

Only the N and O have been moved from their initial positions, so
we can describe this configuration, relative to the initial configuration,
with a single transposition: (14 15). But, since we used an odd num-
ber of transpositions, we immediately conclude that this configuration
could not have been obtained legally from the normal initial configu-
ration. One should always be wary of a mathematician’s challenge.
Another configuration of interest is the 1-blank, in which the blank

is in the top left corner and the contents of every position are shifted
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to the right one place:

A B C

D E F G

H I J K

L M N O

Standardize the configuration:

D A B C

E F G K

L H I J

M N O

Is this configuration possible? To achieve this configuration from the
initial configuration, one must use the permutation

(12 9)(12 10)(11 10)(8 10)(2 1)(3 1)(4 1)

This permutation is odd, and thus the configuration is impossible to
obtain through legal moves.
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