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Important Definitions

Definition
A group G is any non-empty set with a binary operation that has
an identity element, every element in the group has an inverse,
it is closed under the binary operation, and it is associative

Definition
An isometry is a transformation on the plane which preserves
distances and is bijective
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Isometries of the Complex Plane

Every isometry on the complex plane follows one of two
forms...

1 f (z) = αz + β or
2 f (z) = αz̄ + β

Where |α| =1 and α, β ∈ C
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Isometries and Groups

The isometries of some figure F ⊆ C that fix F form a
group
I(F ) = {g ∈ I(C) : g(F ) = F}
Any two isometries of F multiplied will still give you F
The “do nothing" isometry is the identity
Each isometry has an inverse
The isometries of F are associative
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Standard Frieze Group

Definition
A frieze group is any group G of isometries in the complex
plane such that for every g ∈ G, g(R) = R and the translations
in the group form an infinite cyclic group generated by τ where
τ(z) = z + 1

Definition
A group is said to be cyclic if there exists a ∈ C such that every
g ∈ G is equal to am for some m ∈ Z
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Important Proof

We can apply isometries of the complex plane, to frieze
groups, with even more precision

Proposition
For any isometry of a frieze group, α =1 or -1 and β ∈ R

Proof.
First, observe f (0) = α(0) + β = β which implies β ∈ R
because f (0) ∈ R. Next, observe f (1) = α(1) + β. Since both
β, f (1) ∈ R, we know that α ∈ R. We have already established
|α| = 1, thus α = 1 or -1
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Isometries of Frieze Groups

Using the equation for an isometry of a frieze group, we
find that there are five different types of isometries of G.
f (z) = αz + β or
f (z) = αz̄ + β

Where α = ±1 and β ∈ R
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If α = 1

f (z) = αz + β: Then z + β. This is an element of T , the
translations, so we kno β must equal m ∈ Z
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If α = 1

f (z) = αz̄ + β Then f (z) = z̄ + β. If β = 0 and f (z) = z̄, f
will be a reflection about the x-axis. If β = m ∈ Z then f will
be a reflection about the x-axis and then a translation by
an integer m. By squaring f we find out that β can also
equal m + 1

2 . This will be a glide reflection.
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If α = −1

f (z) = αz + β: Then f (z) = −z + β. This is a 180◦ rotation.
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If α = −1

f (z) = αz̄ + β: Then f = −z̄ + β. This is a vertical
reflection.
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Normal Subgroups

Definition
If H is a subgroup of G, we say H is a normal subgroup of G if
for all x ∈ G, x−1Hx ⊆ H

A normal subgroup H of a group G is denoted H /G
The set of all translations T is a normal subgroup of any
frieze group G
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Two Isometries congruent mod T

Definition
If H is a subgroup of G and x , y ∈ G, then x and y are
congruent mod H if y−1x ∈ H

In order for any two isometries f and g to be congruent
mod T , they must be of the same form
Also, every two isometries of the same form are congruent
mod T
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General Quotient Group

Definition
For H /G, we denote the set of cosets of H as the quotient
group G/H, which is equal to {gH | g ∈ G} together with an
operator given by gH • fH = gfH where g, f ∈ G

For any group of isometries G, the order of G/T must be
less than or equal to five, because there are only five
different types of isometries
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LaGrange’s Theorem Applied

We can apply LaGrange’s theorem which states that for
any finite group G, the order of any subgroup H of G must
divide the order of G
Again defining G to be a frieze group, we now know that
the order of G/T must be either one, or an even number
Hence, for any frieze group G, the order of G/T must be
either one, two, or four
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Types of Frieze Patterns

Because of LaGranges Theorem, we know that the order
of G/T must be either one, two, or four. We also know that
G/T must contain T .
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Examples, Order 1

G/T =< T > This group is just translations.
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Examples, Order 2

Because T , the translations, is included in each of the
orders of G/T , there are only four possibilites for groups of
order two.
< T , ρT > This group consists of 180o rotations.
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Example, Order 2

< T , vT > This group consists of vertical reflections.
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Examples, Order 2

< T ,hT > This group consists of horizontal reflections.
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Example, Order 2

< T ,gT > This group consists of glide reflections.
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Examples, Order 4

Because T must be included in each group, and because
g and h cannot be included together in the same group,
there are only two possible groups of order four.
< T , vT , ρT ,gT > This group consists of vertical
reflections, rotations, and glide reflections
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Examples, Order 4

< T , vT , ρT ,hT > This group consists of vertical and
horizontal reflections, and rotations
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