## A Classification of Frieze Patterns

Taylor Collins<sup>1</sup>

Aaron Reaves<sup>2</sup> Tommy Naugle <sup>1</sup> Gerard Williams <sup>1</sup>

ヘロン ヘアン ヘビン ヘビン

3

<sup>1</sup>Louisiana State University Baton Rouge, LA

<sup>2</sup>Morehouse College Atlanta, GA

July 9, 2010

# Outline



- Important Definitions
- Introduction to Isometries
- 2 Groups
  - Frieze Groups
  - Normal Subgroups
- Frieze Patterns Applied
  - Congruence
  - Quotient Groups
  - LaGrange Applied
  - Types of Frieze Patterns

э

▲ @ ▶ ▲ ⊇ ▶

э

Introduction

Groups Frieze Patterns Applied Important Definitions Introduction to Isometries

イロト イヨト イヨト イ

# Outline



- Important Definitions
- Introduction to Isometries
- 2 Groups
  - Frieze Groups
  - Normal Subgroups
- Frieze Patterns Applied
  - Congruence
  - Quotient Groups
  - LaGrange Applied
  - Types of Frieze Patterns

Important Definitions Introduction to Isometries

## **Important Definitions**

### Definition

A group G is any non-empty set with a binary operation that has an identity element, every element in the group has an inverse, it is closed under the binary operation, and it is associative

### Definition

An isometry is a transformation on the plane which preserves distances and is bijective

Important Definitions Introduction to Isometries

イロト イポト イヨト イヨト

## **Important Definitions**

### Definition

A group *G* is any non-empty set with a binary operation that has an identity element, every element in the group has an inverse, it is closed under the binary operation, and it is associative

### Definition

An isometry is a transformation on the plane which preserves distances and is bijective

Important Definitions Introduction to Isometries

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

## Isometries of the Complex Plane

• Every isometry on the complex plane follows one of two forms...

1 
$$f(z) = \alpha z + \beta$$
 or  
2  $f(z) = \alpha \overline{z} + \beta$ 

• Where  $|\alpha| = 1$  and  $\alpha, \beta \in \mathbb{C}$ 

Important Definitions Introduction to Isometries

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

## Isometries of the Complex Plane

• Every isometry on the complex plane follows one of two forms...

1 
$$f(z) = \alpha z + \beta$$
 or  
2  $f(z) = \alpha \overline{z} + \beta$ 

• Where  $|\alpha| = 1$  and  $\alpha, \beta \in \mathbb{C}$ 

Important Definitions Introduction to Isometries

イロト イポト イヨト イヨト

3

## Isometries of the Complex Plane

• Every isometry on the complex plane follows one of two forms...

1 
$$f(z) = \alpha z + \beta$$
 or  
2  $f(z) = \alpha \overline{z} + \beta$ 

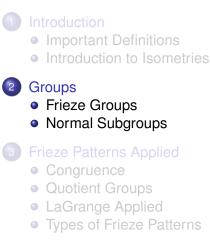
• Where 
$$|\alpha| = 1$$
 and  $\alpha, \beta \in \mathbb{C}$ 

Frieze Groups Normal Subgroups

ヘロト ヘアト ヘヨト

э

# Outline



Frieze Groups Normal Subgroups

イロト イポト イヨト イヨト

- The isometries of some figure F ⊆ C that fix F form a group
- $I(F) = \{g \in I(\mathbb{C}) : g(F) = F\}$
- Any two isometries of F multiplied will still give you F
- The "do nothing" isometry is the identity
- Each isometry has an inverse
- The isometries of *F* are associative

Frieze Groups Normal Subgroups

・ロン・西方・ ・ ヨン・ ヨン・

1

- The isometries of some figure F ⊆ C that fix F form a group
- $I(F) = \{g \in I(\mathbb{C}) : g(F) = F\}$
- Any two isometries of F multiplied will still give you F
- The "do nothing" isometry is the identity
- Each isometry has an inverse
- The isometries of *F* are associative

Frieze Groups Normal Subgroups

イロト イポト イヨト イヨト

- The isometries of some figure F ⊆ C that fix F form a group
- $I(F) = \{g \in I(\mathbb{C}) : g(F) = F\}$
- Any two isometries of F multiplied will still give you F
- The "do nothing" isometry is the identity
- Each isometry has an inverse
- The isometries of F are associative

Frieze Groups Normal Subgroups

ヘロン 人間 とくほ とくほ とう

э.

- The isometries of some figure F ⊆ C that fix F form a group
- $I(F) = \{g \in I(\mathbb{C}) : g(F) = F\}$
- Any two isometries of F multiplied will still give you F
- The "do nothing" isometry is the identity
- Each isometry has an inverse
- The isometries of F are associative

Frieze Groups Normal Subgroups

## Standard Frieze Group

### Definition

A frieze group is any group *G* of isometries in the complex plane such that for every  $g \in G$ ,  $g(\mathbb{R}) = \mathbb{R}$  and the translations in the group form an infinite cyclic group generated by  $\tau$  where  $\tau(z) = z + 1$ 

#### Definition

A group is said to be cyclic if there exists  $a \in \mathbb{C}$  such that every  $g \in G$  is equal to  $a^m$  for some  $m \in \mathbb{Z}$ 

ヘロト ヘ戸ト ヘヨト ヘヨト

Frieze Groups Normal Subgroups

## Standard Frieze Group

### Definition

A frieze group is any group *G* of isometries in the complex plane such that for every  $g \in G$ ,  $g(\mathbb{R}) = \mathbb{R}$  and the translations in the group form an infinite cyclic group generated by  $\tau$  where  $\tau(z) = z + 1$ 

#### Definition

A group is said to be cyclic if there exists  $a \in \mathbb{C}$  such that every  $g \in G$  is equal to  $a^m$  for some  $m \in \mathbb{Z}$ 

イロト イポト イヨト イヨト

Frieze Groups Normal Subgroups

## **Important Proof**

• We can apply isometries of the complex plane, to frieze groups, with even more precision

#### Proposition

For any isometry of a frieze group,  $\alpha = 1$  or -1 and  $\beta \in \mathbb{R}$ 

#### Proof.

First, observe  $f(0) = \alpha(0) + \beta = \beta$  which implies  $\beta \in \mathbb{R}$ because  $f(0) \in \mathbb{R}$ . Next, observe  $f(1) = \alpha(1) + \beta$ . Since both  $\beta, f(1) \in \mathbb{R}$ , we know that  $\alpha \in \mathbb{R}$ . We have already established  $|\alpha| = 1$ , thus  $\alpha = 1$  or -1

イロト イポト イヨト イヨト

Frieze Groups Normal Subgroups

## Important Proof

• We can apply isometries of the complex plane, to frieze groups, with even more precision

### Proposition

For any isometry of a frieze group,  $\alpha = 1$  or -1 and  $\beta \in \mathbb{R}$ 

#### Proof.

First, observe  $f(0) = \alpha(0) + \beta = \beta$  which implies  $\beta \in \mathbb{R}$ because  $f(0) \in \mathbb{R}$ . Next, observe  $f(1) = \alpha(1) + \beta$ . Since both  $\beta, f(1) \in \mathbb{R}$ , we know that  $\alpha \in \mathbb{R}$ . We have already established  $|\alpha| = 1$ , thus  $\alpha = 1$  or -1

<ロト <回 > < 注 > < 注 > 、

Frieze Groups Normal Subgroups

## Important Proof

• We can apply isometries of the complex plane, to frieze groups, with even more precision

### Proposition

For any isometry of a frieze group,  $\alpha = 1$  or -1 and  $\beta \in \mathbb{R}$ 

#### Proof.

First, observe  $f(0) = \alpha(0) + \beta = \beta$  which implies  $\beta \in \mathbb{R}$ because  $f(0) \in \mathbb{R}$ . Next, observe  $f(1) = \alpha(1) + \beta$ . Since both  $\beta, f(1) \in \mathbb{R}$ , we know that  $\alpha \in \mathbb{R}$ . We have already established  $|\alpha| = 1$ , thus  $\alpha = 1$  or -1

イロン 不得 とくほ とくほとう

Frieze Groups Normal Subgroups

イロト イポト イヨト イヨト

э.

# **Isometries of Frieze Groups**

- Using the equation for an isometry of a frieze group, we find that there are five different types of isometries of *G*.
- $f(z) = \alpha z + \beta$  or
- $f(z) = \alpha \bar{z} + \beta$
- Where  $\alpha = \pm 1$  and  $\beta \in \mathbb{R}$

Frieze Groups Normal Subgroups

イロト イポト イヨト イヨト

æ

# **Isometries of Frieze Groups**

• Using the equation for an isometry of a frieze group, we find that there are five different types of isometries of *G*.

• 
$$f(z) = \alpha z + \beta$$
 or

• 
$$f(z) = \alpha \bar{z} + \beta$$

• Where  $\alpha = \pm 1$  and  $\beta \in \mathbb{R}$ 

Frieze Groups Normal Subgroups

イロト イポト イヨト イヨト

1

# **Isometries of Frieze Groups**

- Using the equation for an isometry of a frieze group, we find that there are five different types of isometries of G.
- $f(z) = \alpha z + \beta$  or

• 
$$f(z) = \alpha \bar{z} + \beta$$

• Where  $\alpha = \pm 1$  and  $\beta \in \mathbb{R}$ 

Frieze Groups Normal Subgroups

イロン 不得 とくほ とくほとう

# **Isometries of Frieze Groups**

 Using the equation for an isometry of a frieze group, we find that there are five different types of isometries of G.

• 
$$f(z) = \alpha z + \beta$$
 or

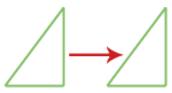
• 
$$f(z) = \alpha \bar{z} + \beta$$

• Where  $\alpha = \pm 1$  and  $\beta \in \mathbb{R}$ 

Frieze Groups Normal Subgroups

## If $\alpha = 1$

f(z) = αz + β: Then z + β. This is an element of T, the translations, so we kno β must equal m ∈ Z



イロト イポト イヨト イヨト

3

Frieze Groups Normal Subgroups

## If $\alpha = 1$

f(z) = αz̄ + β Then f(z) = z̄ + β. If β = 0 and f(z) = z̄, f will be a reflection about the x-axis. If β = m ∈ Z then f will be a reflection about the x-axis and then a translation by an integer m. By squaring f we find out that β can also equal m + 1/2. This will be a glide reflection.



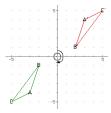
イロト イポト イヨト イヨト

э.

Frieze Groups Normal Subgroups

### If $\alpha = -1$

### • $f(z) = \alpha z + \beta$ : Then $f(z) = -z + \beta$ . This is a 180° rotation.



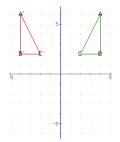
▲ロト ▲帰 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

Collins, Reaves, Naugle, Williams Frieze Patterns

Frieze Groups Normal Subgroups

If  $\alpha = -1$ 

*f*(*z*) = α*z* + β: Then *f* = −*z* + β. This is a vertical reflection.



イロン 不同 とくほ とくほ とう

ъ

Collins, Reaves, Naugle, Williams Frieze Patterns

Frieze Groups Normal Subgroups

イロト イポト イヨト イヨト

1

# Normal Subgroups

### Definition

If *H* is a subgroup of *G*, we say *H* is a normal subgroup of *G* if for all  $x \in G$ ,  $x^{-1}Hx \subseteq H$ 

- A normal subgroup H of a group G is denoted  $H \triangleleft G$
- The set of all translations *T* is a normal subgroup of any frieze group *G*

Frieze Groups Normal Subgroups

# Normal Subgroups

### Definition

If *H* is a subgroup of *G*, we say *H* is a normal subgroup of *G* if for all  $x \in G$ ,  $x^{-1}Hx \subseteq H$ 

- A normal subgroup H of a group G is denoted  $H \triangleleft G$
- The set of all translations *T* is a normal subgroup of any frieze group *G*

・ロン ・聞と ・ ほと ・ ほとう

1

Frieze Groups Normal Subgroups

イロト イポト イヨト イヨト

1

# Normal Subgroups

### Definition

If *H* is a subgroup of *G*, we say *H* is a normal subgroup of *G* if for all  $x \in G$ ,  $x^{-1}Hx \subseteq H$ 

- A normal subgroup H of a group G is denoted  $H \triangleleft G$
- The set of all translations *T* is a normal subgroup of any frieze group *G*

Congruence Quotient Groups LaGrange Applied Types of Frieze Patterns

ヘロト ヘアト ヘヨト ヘ

3

# Outline



Congruence Quotient Groups LaGrange Applied Types of Frieze Patterns

ヘロト ヘ戸ト ヘヨト ヘヨト

# Two Isometries congruent mod T

### Definition

If *H* is a subgroup of *G* and  $x, y \in G$ , then *x* and *y* are congruent mod *H* if  $y^{-1}x \in H$ 

- In order for any two isometries *f* and *g* to be congruent mod *T*, they must be of the same form
- Also, every two isometries of the same form are congruent mod T

Congruence Quotient Groups LaGrange Applied Types of Frieze Patterns

ヘロト 人間 とくほとくほとう

# Two Isometries congruent mod T

### Definition

If *H* is a subgroup of *G* and  $x, y \in G$ , then *x* and *y* are congruent mod *H* if  $y^{-1}x \in H$ 

- In order for any two isometries f and g to be congruent mod T, they must be of the same form
- Also, every two isometries of the same form are congruent mod T

Congruence Quotient Groups LaGrange Applied Types of Frieze Patterns

ヘロト 人間 ト ヘヨト ヘヨト

# Two Isometries congruent mod T

### Definition

If *H* is a subgroup of *G* and  $x, y \in G$ , then *x* and *y* are congruent mod *H* if  $y^{-1}x \in H$ 

- In order for any two isometries *f* and *g* to be congruent mod *T*, they must be of the same form
- Also, every two isometries of the same form are congruent mod T

Congruence Quotient Groups LaGrange Applied Types of Frieze Patterns

くロト (過) (目) (日)

# **General Quotient Group**

### Definition

For  $H \triangleleft G$ , we denote the set of cosets of H as the quotient group G/H, which is equal to  $\{gH \mid g \in G\}$  together with an operator given by  $gH \bullet fH = gfH$  where  $g, f \in G$ 

• For any group of isometries *G*, the order of *G*/*T* must be less than or equal to five, because there are only five different types of isometries

Congruence Quotient Groups LaGrange Applied Types of Frieze Patterns

ヘロト ヘ戸ト ヘヨト ヘヨト

# **General Quotient Group**

### Definition

For  $H \triangleleft G$ , we denote the set of cosets of H as the quotient group G/H, which is equal to  $\{gH \mid g \in G\}$  together with an operator given by  $gH \bullet fH = gfH$  where  $g, f \in G$ 

• For any group of isometries *G*, the order of *G*/*T* must be less than or equal to five, because there are only five different types of isometries

Congruence Quotient Groups LaGrange Applied Types of Frieze Patterns

イロト イポト イヨト イヨト

# LaGrange's Theorem Applied

- We can apply LaGrange's theorem which states that for any finite group *G*, the order of any subgroup *H* of *G* must divide the order of *G*
- Again defining *G* to be a frieze group, we now know that the order of G/T must be either one, or an even number
- Hence, for any frieze group *G*, the order of *G*/*T* must be either one, two, or four

Congruence Quotient Groups LaGrange Applied Types of Frieze Patterns

イロト イポト イヨト イヨト

# LaGrange's Theorem Applied

- We can apply LaGrange's theorem which states that for any finite group *G*, the order of any subgroup *H* of *G* must divide the order of *G*
- Again defining *G* to be a frieze group, we now know that the order of G/T must be either one, or an even number
- Hence, for any frieze group G, the order of G/T must be either one, two, or four

Congruence Quotient Groups LaGrange Applied Types of Frieze Patterns

くロト (過) (目) (日)

# LaGrange's Theorem Applied

- We can apply LaGrange's theorem which states that for any finite group *G*, the order of any subgroup *H* of *G* must divide the order of *G*
- Again defining *G* to be a frieze group, we now know that the order of G/T must be either one, or an even number
- Hence, for any frieze group *G*, the order of *G*/*T* must be either one, two, or four

Congruence Quotient Groups LaGrange Applied Types of Frieze Patterns

イロト イポト イヨト イヨト

э

#### Types of Frieze Patterns

 Because of LaGranges Theorem, we know that the order of *G*/*T* must be either one, two, or four. We also know that *G*/*T* must contain *T*.

Congruence Quotient Groups LaGrange Applied Types of Frieze Patterns

イロト 不得 とくほと くほとう

3

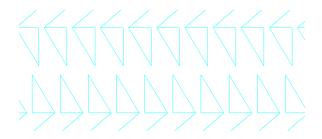
### Examples, Order 1

#### • G/T = < T > This group is just translations.

Congruence Quotient Groups LaGrange Applied Types of Frieze Patterns

# Examples, Order 2

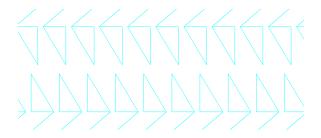
- Because *T*, the translations, is included in each of the orders of *G*/*T*, there are only four possibilites for groups of order two.
- $< T, \rho T >$  This group consists of 180<sup>o</sup> rotations.



Types of Frieze Patterns

# Examples, Order 2

- Because T, the translations, is included in each of the orders of G/T, there are only four possibilities for groups of order two.
- $< T, \rho T >$  This group consists of 180<sup>o</sup> rotations.



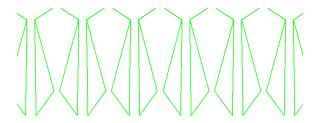
Congruence Quotient Groups LaGrange Applied Types of Frieze Patterns

イロト 不得 とくほ とくほとう

э

### Example, Order 2

#### • < T, vT > This group consists of vertical reflections.



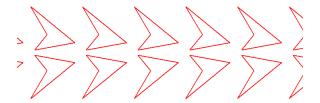
Congruence Quotient Groups LaGrange Applied Types of Frieze Patterns

イロト 不得 とくほ とくほとう

3

#### Examples, Order 2

• < T, hT > This group consists of horizontal reflections.



Congruence Quotient Groups LaGrange Applied Types of Frieze Patterns

イロン 不同 とくほ とくほ とう

э

### Example, Order 2

• < T, gT > This group consists of glide reflections.

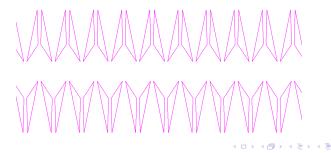




Congruence Quotient Groups LaGrange Applied Types of Frieze Patterns

# Examples, Order 4

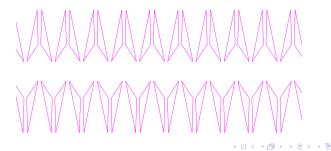
- Because *T* must be included in each group, and because *g* and *h* cannot be included together in the same group, there are only two possible groups of order four.
- < T, vT, ρT, gT > This group consists of vertical reflections, rotations, and glide reflections



Congruence Quotient Groups LaGrange Applied Types of Frieze Patterns

# Examples, Order 4

- Because *T* must be included in each group, and because *g* and *h* cannot be included together in the same group, there are only two possible groups of order four.
- < T, vT, ρT, gT > This group consists of vertical reflections, rotations, and glide reflections



Congruence Quotient Groups LaGrange Applied Types of Frieze Patterns

프 🕨 🗉 프

### Examples, Order 4

 < T, νT, ρT, hT > This group consists of vertical and horizontal reflections, and rotations

