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Abstract. This paper explores the properties of frieze patterns.
We will begin by displaying background information such as the
definition of a group and of an isometry. Then, by showing that
any frieze pattern is a group, we apply properties of isometries to
the frieze patterns. This allows us to define five types of isometries
and explore their relationship to each other, and the pattern as a
whole. In exploring their properties, we classify every freize pattern
as one of seven types.

1. Introduction

A frieze pattern is a patterned band of repeated design. Frieze pat-
terns are often seen as border patterns found on architecture, pottery,
stitching, and wall paper. A frieze pattern will always have some type
of symmetry. Different types of frieze patterns can be found from the
different symmetries they possess. This paper will analyze the math-
ematics behind the different symmetries of frieze patterns, and why
only specific symmetries can make a frieze pattern. In this paper frieze
patterns will be looked at as infinite strips of repeating symmetries.
This analysis of frieze patterns will begin with two very important def-
initions.

2. Important Definitions

Definition 2.1. A Group is a non-empty set together with an oper-
ation that is closed under that operation, associative, has an identity
element, and every element in the set has an inverse.

Definition 2.2. An isometry is a transformation of the plane which
preserves distances and is bijective.

3. Isometries of a Figure Form a Group

We find that the isometries of some figure F ⊆ C that fix F form
a group. Using the definition of a set we see that I(F ) = {g ∈ I(C) :
g(F ) = F}. So any isometry g ∈ C is an element of the isometries
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of the complex plain, and maps F to itself. So any two isometries
composed will always give you an element of F . This proves that I(F )
is closed. The “do nothing” isometry acts as the identity, the isometries
of F are associative, and the inverse of an isometry exists because the
inverse of an isometry is just another isometry. So we see that I(F ) is
a group.

4. Isometries of a Group in the Complex Plane

The isometries of a group are represented in the complex plane when
β, α ∈ C and |α| = 1.

Lemma 4.1. Let G be an isometry of C with G(0) = 0, G(1) = 1
If:

(1) G(i) = i, then G(z) = z for all z ∈ C
(2) G(i) = −i, then G(z) = z̄ for all z ∈ C

Proof. Case 1:

G(0) = 0, G(1) = 1, G(i) = i

Fix

z = x+ iy with x, y ∈ R

Set

G(z) = v + iw with v, w ∈ R

(1) We have that dist[G(z), 0] = dist[z, 0], and
dist[(v, w), (0, 0)] = dist[(x, y), (0, 0)]
so v2 + w2 = x2 + y2

(2) We have that dist[G(z), 1] = dist [z, 1] and
dist[(v, w), (1, 0)] = dist[(x, y), (1, 0)]
so (w−1)2+v2 = (x−1)2+y2 which expands to w2+v2−2w+1 =
x2 + y2 − 2y + 1
which simplifies to w = y

(3) We have that dist[G(z), G(1)] = dist[z, 1] and
dist[(v, w), (0, 1)] = dist[(x, y), (0, 1)]
so v2+(w−1)2 = x2+(y−1)2 which expands to v2+w2−2w+1 =
x2 + y2 − 2y + 1



A CLASSIFICATION OF FRIEZE PATTERNS 3

which simplifies to w = y

Thus, G(z) = v + iw = x+ iy = z

Case 2:

G(0) = 0, G(1) = 1, G(i) = −i

Define Ḡ(z) = G(z) which sends

(1) 0 to Ḡ(0) = 0

(2) 1 to Ḡ(1) = 1

(3) i to Ḡ(i) = G(i) = −̄i = i

Moreover, Ḡ = − ◦G is an isometry
Ḡ must then be the identity
Therefore, Ḡ(z) = z for all z So G(z) = z̄

�

Theorem 4.2. Fix α, β ∈ C with |α| = 1

Then the maps

(1) z 7→ αz + β

(2) z 7→ αz̄ + β

are isometries of C and every isometry of C has one of these forms.

Proof. Let F be a fixed isometry of C

α = F (1)− F (0)

β = F (0)
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From 4.1,

G(z) =
F (z)− F (0)

F (1)− F (0)
=
F (z)− β

α
=

{
αz

αz̄

Multiplying by α gives us

G(z) = F (z)− β =

{
αz

αz̄

Adding β, we can see the only two possible forms of the isometry
F (z).

F (z) =

{
αz + β

αz̄ + β

�

5. Standard Frieze Group G

5.1. Frieze Group. - A frieze group is any group G of isometries
in the complex plane such that for every g ∈ G, g(R) = R and the
translations in the group form an infinite cyclic group generated by τ
where τ(z) = z + 1

Infinite Cyclic Group - A group is said to be infinitly cyclic if every
g ∈ G, is equal to τm for some m ∈ Z where it is possible to generate
infinitly many elements and τM is distinct.

Proposition 5.1. For f ∈ G, where f(z) either equals αz + β or
αz̄ + β, we have α = 1 or α = −1 and β ∈ R.

Proof. Case 1: f(z) = αz + β
Then, f(0) = α(0) + β = β which implies β ∈ R. This holds true

because 0 ∈ R and by definition of a frieze group, f(0) ∈ R. Now
observe f(1) = αz + β = α(1) + β = α + β

We have shown that β ∈ R and we know f(1) ∈ R by definition of
a frieze group. Therefore, f(1) − β = α ∈ R which tells us α = 1 or
α = −1 because we know from Theorem 3.2 that |α| = 1

Case 2: f(z) = αz̄ + β
Using the same argument to Case one, we see for f(z) = αz̄ + β, α

must be 1 or −1 and β ∈ R
Thus, for all cases of f(z), α equals 1 or −1 and β ∈ R �
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6. Isometries of a Frieze Group

As we have seen there are two cases we must consider for the isome-
tries of a frieze group. For any element f of the frieze group G,
f(z) = αz + β or f(z) = αz̄ + β, and because α = ±1 we have two
such scenerios for each case.

6.1. Case 1.

6.1.1. α = 1. Then f(z) = z + β which is an element of T , so β must
be equal to some m ∈ Z

6.1.2. α = −1. Then f(z) = −z + β. This is a 180o rotation.

6.2. Case 2.

6.2.1. α = 1. Then f(z) = z̄+ β. This is a reflection about the x-axis.
If β = 0 then the equation will be f(z) = z̄, which is just a horizontal
reflection. Now, if we take f 2 we know that we will still get an isometry.
So,

f(f(z)) = (z̄ + β) + β = z + β̄ + β = z + β + β = z + 2β

We find that f 2 is a translation. Because f 2 is a translation, 2β ∈ Z,
so we get that β is equal to half of an integer. This means that for any
m ∈ Z, β = m, or β = 1

2
+m. If β = m then f is a horizontal reflection

then a translation by m. If β = 1
2

+m then f is a glide reflection.

6.2.2. α = −1. Then f = −z̄ + β. This will be a vertical reflection.
So we see that there are five possible types of isometries for any

group G

7. Normal Groups

If H is a subgroup of G, we say H is normal in G if for all x ∈ G,
x−1Hx ⊆ H. In every scenerio, H ⊆ x−1Hx, so if H is a normal
subgroup of G, H ⊆ x−1Hx ⊆ H which implies x−1Hx = H. From
here on we use H /G to denote that H is a normal subgroup of G. For
H / G, we denote the set of cosets of H as “G/H”

Proposition 7.1. The set of translations T is normal in a frieze group
G

Proof. Let τ ∈ T so that τ(z) = z + 1 and g ∈ G. If T is normal
in G, then g−1Tg ⊆ T for all g ∈ G. We choose τm ∈ T so that
m ∈ Z. Then, we first pick an arbitratry g of the form g(z) = αz + β.
Then g−1(z) = z−β

α
. Then, (g−1 ◦ τm ◦ g)(z) = g−1 ◦ ((τm ◦ g)(z)) =
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g−1(τm(g(z))) = g−1((αz + β) +m) = ((αz+β)+m)−β
α

= z + m
α

. Next, we

pick an arbitratry g of the form g = αz̄ + β̄ where g−1 = z̄−β̄
α

= z̄−β
α

.
Then, (g−1◦tm◦g)(z) = g−1◦((tm◦g)(z)) = g−1(tm(g(z))) = g−1((αz̄+

β) + m) = ((ᾱ¯̄z+β̄)+m̄)−β
α

= ((αz+β)+m)−β
α

= z + m
α
⊆ G. Therefore, for

every g ∈ G, we have shown g−1 ◦ T ◦ g ⊆ T , which proves T / G. �

8. Isometries Congruent mod T

8.1. General Congruent Form. If H is a subgroup of G and x, y ∈
G, then x and y are congruent mod H (denoted x ≡ y(modH)) if
y−1x ∈ H

Then when examining frieze groups, we can suppose f and g are
congruent mod T . This implies g−1f = τm for some m ∈ Z. This tells
us that f(z) = g(tm(z)). Using this property, we can explore which
isometries are congruent mod T .

Proposition 8.1. If f and g are congruent mod T then either
f(z) = α1z + β1 and g(z) = α2z + β2 where α1 = α2 or
f(z) = α1z̄ + β1 and g(z) = α2z̄ + β2 where α1 = α2

Proof. Case 1: f is of the form f(z) = α1z + β1 and g is of the form
g(z) = α2z + β2

Since f and g are congruent, f(z) = g(tm(z)). Therefore, f(z) =
α2(z + m) + β2 = α2z + α2m + β2. This tells us that in order for
f and g to be congruent, f(z) must equal α2z + α2m + β2. That
is, f(z) = α1z + β1 = α2z + α2m + β2. This must hold true for all
z ∈ C, so we let z = 0 and see β1 = α2m+ β2 which is equivelant to 0
= α2m + β2 − β1. Returning to the previous form of the equation, we
see α1z = α2z + (α2m + β2 − β1) = α2z + 0 = α2z. This tells us that
when both f and g use z rather than z̄, they must also use the same α
in order to possibly be congruent mod T

For example, we let f be a 1800 rotation so that α1 = -1. Then g
can only be congruent mod T to f if α2 = -1, so that g is also a 1800

rotation.
The same holds for α1 = α2 = 1.
Case 2: f is of the form f(z) = α1z̄ + β1 and g is of the form

g(z) = α2z̄ + β2

Since f and g are congruent, f(z) = g(tm(z)). Therefore, f(z) equals

α2(z +m) + β2 or α2(z +m+ 1
2
) + β2, which is equivalent to α2(z̄ +

m) + β2 or α2(z̄ + m + 1
2
) + β2. Then, f(z) equals α2z̄ + α2m + β2

or α2z̄ + α2m + α2(1
2
) + β2, respectivly. This must hold true for all

z ∈ R, so we let z = 0. It follows that z̄ = 0 and we see β1 equals
α2m + β2 or α2m + α2(1

2
) + β2 which is equivalent to saying 0 equals
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α2m+ β2− β1 or α2m+α2(1
2
) + β2− β1, respectivly. Returning to the

previous form of the equation, we see α1z̄ equals α2z̄+ (α2m+β2−β1)
or α2z̄+ (α2m+α2(1

2
) +β2−β1), respectivly, which tells us α1z̄ = α2z̄.

This tells us that when both f and g use z̄ rather than z, they must
also use the same α in order to possibly be congruent mod T .

For example, suppose f is a horzontal reflection so that α1 = 1. Then
g can only be congruent mod T to f if α2 = 1, so g is also a horizontal
reflection. The same holds for α1 = α2 = -1.

Case 3: Either f or g has z, while the other has z̄
Without loss of generality, let f = α1z+β1 and g = α2z̄+β2. Then,

f(z) = g(tm(z)) = α2(z̄+ m̄) +β2 = α2(z̄+m) +β2 = α2z̄+α2m+β2.
This must hold true for all z ∈ C, so we let z = 0 which tells us z̄ = 0
and see β1 = α2m+ β2 which implies 0 = α2m+ β2− β1. Returning to
the previous form of the equation, we see α1z = α2z̄+(α2m+β2−β1) =
α2z̄ + 0 = α2z̄. This must old true for all z ∈ IC. However, if we let
z = 1 + i, it follows that z̄ = 1− i. Without loss of generality, let α1 =
1. We then see α1z = 1(1 + i) = 1 + i 6= α2(1 − i) = α2z̄. Therefore,
if f(z) = α1z + β1 and g(z) = α2z̄ + β2, f and g can not be congruent
mod T . The same holds true if g(z) = α2z + β2 and f(z) = α1z̄ + β1.

We conclude that for all 5 isometries, any two of different types are
not congruent mod T �

Proposition 8.2. If f ∈ G, then f 2 ∈ T

Proof. Given any f ∈ G and knowing T = 〈τ〉 ≤ G, f can be one of
five possible cases.

Case 1: f is a translation.

Then, for some m ∈ Z

f(z) = z +m

f = τm

f 2 = τ 2m ∈ T

Case 2: f is a rotation by 180◦.

Then, for some β ∈ R
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f(z) = −z + β

f 2(z) = f(f(z)) = (z − β) + β

= z

Thus, f 2 = τ 0 ∈ T

Case 3: f is a reflection about the x-axis.

Then, for some m ∈ Z

f(z) = z̄ +m

f 2(z) = f(f(z)) = (z̄ +m) +m

= z + m̄+m

= z + 2m

Thus, f 2 = τ 2m ∈ T

Case 4: f is a glide reflection.

Then, for some m ∈ Z

f(z) = z̄ + 1/2 +m

f 2(z) = f(f(z)) = (z̄ + 1/2 +m) + 1/2 +m

= z + 1 + 2m

Thus, f 2 = τ 2m+1 ∈ T

Case 5: f is a reflection about the y-axis.

Then, for some β ∈ R
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f(z) = −z̄ + β

f 2(z) = f(f(z)) = −(−z̄ + β) + β

= z − β̄ + β

= z

Thus, f 2 = τ ∈ T
�

9. Quotient Groups

For H/G, we denote the set of cosets of H as the quotient group G/H
equals (gH | g ∈ G) together with an operator given by gH•fH = gfH
where g, f ∈ G. It is also easy to check that every quotient group is a
group, by going through the requirements for a group.

9.1. Isometry Correspondance to the Quotient Group. Recall
earlier, when we showed that any two isometries of the same type are
congruent mod T , and any two isometries of different types are not.
Therefore, each element of G/T corresponds to one type of isometry
This tells us that the order of G/T must be less than or equal to five,
because there only five different types of isometries.

9.2. LaGrange’s Theorem Applied. LaGrange’s theorem states that
for any finite group G, the order of any subgroup H of G must divide
the order of G

We have shown that each element of G/T has order one or two.
Each of these elements generate cyclic subgroups of G/T , which is
finite. Therefore, we can apply LaGrange’s theorem, which tells us
that the order of G/T must be one, or an even number. From earlier
in this section, we saw that the order of G/T is less than or equal to
five. Hence, we see that the order of G/T must be either one, two, or
four.

10. Isometry Groups

Because of LaGrange’s Theorem, we know that the order of G/T
must be either one, two, or four. We also know that G/T must contain
T . This simply means that each frieze group will have an infinite
number of translations. Each order that is not order one will contain
any of the other four isometries of G: ρ(z) = −z + β1(180o rotation),
v(z) = −z̄ + β2 (verticle reflection), h(z) = z̄ (horizontal reflection),or
g(z) = z̄ + 1

2
+m (glide reflection).
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10.1. Groups of Order One. < T >

10.2. Groups of Order Two. Because T is included in each of the
orders of G/T , there are only four possibilites for groups of order two.
< T, vT >< T, hT >< T, ρT >< T, gT >

10.2.1. < T, vT >.

10.2.2. < T, hT >.

10.2.3. < T, ρT >.

10.2.4. < T, gT >.

10.3. Groups of Order Four. The combinations of order four be-
come very limited for two reasons. The first reason is because T must
be included in each goup. The second is because g and h, that is, the
glide reflections and horizontal reflections, cannot be included together
in the same isometry group. A reflection composed with a glide reflec-
tion would result in a translation by 1

2
or m+ 1

2
,for some m ∈ Z , but

that is not included in T , the translations in G. All translations in G
are by an integer, so any combination involving a glide refleciton and
a horizontal reflection would not work. This only leaves two possible
groups of order four.

10.3.1. < T, vT, ρT, gT >. This group consists of vertical reflections,
rotations, glide reflections and translations

10.3.2. < T, vT, ρT, hT >. This group consists of vertical and horizon-
tal reflecitons, rotations, and translations.

11. Conclusion

In conclusion, frieze patterns can be represented by isometries in
the complex plane. When analyzing these isometries mathematically,
we found that there are only seven different possible types of frieze
patterns.
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