Realizing Zero-Divisor Graphs

Adrianna Guillory² Mhel Lazo¹ Laura Mondello¹ Thomas Naugle¹

¹Department of Mathematics Louisiana State University Baton Rouge, LA

²Department of Mathematics Southern University Baton Rouge, LA

SMILE 2011

This project is inspired by Dr. Sandra Spiroff from the University of Mississippi and is mentored by Benjamin Dribus from Louisiana State University.

(日)

Outline

Motivation

- Ring Theory
- Constructing Zero Divisor Graphs
- The Project
- Non-Existence Proofs Example
- The Rings
 - Graphs Realized as AL Graphs

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- 3 Extension
 - Mulay Graphs
 - Larger Graphs

What is a Ring?

A **ring** R is a set together with two binary operations + and \cdot (called addition and multiplication) satisfying the following axioms:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

What is a Ring?

A **ring** R is a set together with two binary operations + and \cdot (called addition and multiplication) satisfying the following axioms:

- A. R is an Abelian group under +
- B. For any a, b in $R, a \cdot b$ is in R. (closure of multiplication)
- C. For any a, b, c in R, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$. (associativity of multiplication)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

D. For any a, b, c in R, $a \cdot (b + c) = a \cdot b + a \cdot c$ and $(a + b) \cdot c = a \cdot c + b \cdot c$. (distributive property)

What is a Ring?

A **ring** R is a set together with two binary operations + and \cdot (called addition and multiplication) satisfying the following axioms:

- A. R is an Abelian group under +
- B. For any a, b in $R, a \cdot b$ is in R. (closure of multiplication)
- C. For any a, b, c in R, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$. (associativity of multiplication)
- D. For any a, b, c in R, $a \cdot (b + c) = a \cdot b + a \cdot c$ and $(a + b) \cdot c = a \cdot c + b \cdot c$. (distributive property)

Additionally, R is **commutative if for all a, b in R, $a \cdot b = b \cdot a$; and R has **unity** if 1 is in R such that $a \cdot 1 = 1 \cdot a$ for all a in R.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Zero Divisors

Definition

A non-zero element, r, of a commutative ring, R, is called a **zero divisor** if $r \cdot s = 0$ for some non-zero s also in R. We say that r **annihilates** s and vice versa.

Example

Consider the ring $\mathbb{Z}/6\mathbb{Z}$ which has elements $\{0,1,2,3,4,5\}.$ The zero-divisors are $\{2,3,4\}.$

Zero Divisors

Definition

A non-zero element, r, of a commutative ring, R, is called a **zero divisor** if $r \cdot s = 0$ for some non-zero s also in R. We say that r **annihilates** s and vice versa.

Example

Consider the ring $\mathbb{Z}/6\mathbb{Z}$ which has elements $\{0,1,2,3,4,5\}.$ The zero-divisors are $\{2,3,4\}.$

$$2 \cdot 3 = 6 \equiv 0 \mod 6$$

Zero Divisors

Definition

A non-zero element, r, of a commutative ring, R, is called a **zero divisor** if $r \cdot s = 0$ for some non-zero s also in R. We say that r **annihilates** s and vice versa.

Example

Consider the ring $\mathbb{Z}/6\mathbb{Z}$ which has elements $\{0,1,2,3,4,5\}.$ The zero-divisors are $\{2,3,4\}.$

 $2 \cdot 3 = 6 \equiv 0 \mod 6$ $3 \cdot 4 = 12 \equiv 0 \mod 6$

Anderson-Livingston Graph

Definition

An **Anderson-Livingston zero-divisor graph** of a commutative ring, R, with unity is a simple graph (i.e. with no loops or multiple edges) whose set of vertices consists of all non-zero zero divisors, with an edge between a and b if $a \cdot b = 0$. These graphs will be denoted $\Gamma(R)$.

Example			
	•	•	•
	2	3	4

Anderson-Livingston Graph

Definition

An **Anderson-Livingston zero-divisor graph** of a commutative ring, R, with unity is a simple graph (i.e. with no loops or multiple edges) whose set of vertices consists of all non-zero zero divisors, with an edge between a and b if $a \cdot b = 0$. These graphs will be denoted $\Gamma(R)$.

Consider the ring $\mathbb{Z}_3\times\mathbb{Z}_3$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Consider the ring $\mathbb{Z}_3\times\mathbb{Z}_3$

"Elements"

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Consider the ring $\mathbb{Z}_3\times\mathbb{Z}_3$

"Elements"

Consider the ring $\mathbb{Z}_3 \times \mathbb{Z}_3$

"Elements"

(0,0), (1,0), (0,1), (1,1), (2,0), (0,2), (2,2), (2,1), (1,2)

(2,0)● ●(0,2)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Consider the ring $\mathbb{Z}_3 \times \mathbb{Z}_3$

"Elements"

Consider the ring $\mathbb{Z}_3\times\mathbb{Z}_3$

"Elements"

Consider the ring $\mathbb{Z}_3 \times \mathbb{Z}_3$

"Elements"

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Constructing a Zero Divisor Graph

Consider the ring $\mathbb{Z}_2[x,y]/ < x^2, xy, y^2 >$

Constructing a Zero Divisor Graph

Consider the ring $\mathbb{Z}_2[x, y] / \langle x^2, xy, y^2 \rangle$

"Elements"

0, 1, x, y, x + 1, y + 1, x + y, x + y + 1

Constructing a Zero Divisor Graph

Consider the ring $\mathbb{Z}_2[x, y] / \langle x^2, xy, y^2 \rangle$

"Elements"

0, 1, x, y, x + 1, y + 1, x + y, x + y + 1

V

Constructing a Zero Divisor Graph

Consider the ring $\mathbb{Z}_2[x,y]/ < x^2, xy, y^2 >$

"Elements" 0, 1, x, y, x + 1, y + 1, x + y, x + y + 1

•
$$x + y$$
 $xy \equiv 0 \mod xy$

Constructing a Zero Divisor Graph

Consider the ring $\mathbb{Z}_2[x, y] / \langle x^2, xy, y^2 \rangle$

0, 1, x, y, x+1, y+1, x+y, x+y+1

"Elements"

•x + y $xy \equiv 0 \mod xy$ $x(x + y) = x^2 + xy; x^2 \equiv 0 \mod x^2; xy \equiv 0 \mod xy$

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Constructing a Zero Divisor Graph

Consider the ring $\mathbb{Z}_2[x, y] / \langle x^2, xy, y^2 \rangle$

"Elements"

0, 1, x, y, x + 1, y + 1, x + y, x + y + 1 $xy \equiv 0 \mod xy$ $x(x + y) = x^{2} + xy; x^{2} \equiv 0 \mod x^{2}; xy \equiv 0 \mod xy$

$$(x+y)y = xy + y^2$$
; $xy \equiv 0 \mod xy$; $y^2 \equiv 0 \mod y^2$

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

The main goal of this project is to find a ring associated with a given graph. Our work included the following:

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

The main goal of this project is to find a ring associated with a given graph. Our work included the following:

• Draw all the graphs on 1-5 vertices.

The main goal of this project is to find a ring associated with a given graph. Our work included the following:

- Draw all the graphs on 1-5 vertices.
- Determine which of these graphs can be realized as the zero-divisor graph of a ring, *R*.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The main goal of this project is to find a ring associated with a given graph. Our work included the following:

- Draw all the graphs on 1-5 vertices.
- Determine which of these graphs can be realized as the zero-divisor graph of a ring, *R*.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• Give examples of rings associated with these possible graphs.

The main goal of this project is to find a ring associated with a given graph. Our work included the following:

- Draw all the graphs on 1-5 vertices.
- Determine which of these graphs can be realized as the zero-divisor graph of a ring, *R*.
- Give examples of rings associated with these possible graphs.
- Provide proofs for graphs which cannot be realized as a zero-divisor graph of a ring.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The Graphs

The following graph theory terms will help lessen the load:

Definition

A graph is **connected** if there exists a path between any two vertices in the graph.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

The following graph theory terms will help lessen the load:

Definition

A graph is **connected** if there exists a path between any two vertices in the graph.

not connected

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Definition

The **diameter** of a graph, G, denoted diam(G), is the greatest distance between two vertices (i.e. the maximal number of edges between two vertices).

(日)

Definition

The **diameter** of a graph, G, denoted diam(G), is the greatest distance between two vertices (i.e. the maximal number of edges between two vertices).

Useful Theorems

D. F. Anderson and P. S. Livingston proved the following two theorems to eliminate many of the graphs immediately:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Useful Theorems

D. F. Anderson and P. S. Livingston proved the following two theorems to eliminate many of the graphs immediately:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへ⊙

Theorem (Anderson-Livingston)

 $\Gamma(R)$ is always connected.

Theorem (Anderson-Livingston)

 $diam(\Gamma(R)) \leq 3$

1	2	3 •——•	4 • •	5 •	6		8 0	9 0 0 0		11 • • •
	13 • • • •	14	15	16		18	¹⁹ • •	20 0 0	21 0 0 0	22 • • • •
23	24	25	26	27	28	29	30		32	33
34	35	36	37	38	39	40	41	42	43	44
45		47	48	49	50	51	52			

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Proof Strategies

Proof Strategies

To prove that a graph can not be realized as a zero divisor graph, we followed these strategies:

• Suppose the given graph is an [AL] zero divisor graph.

Proof Strategies

- Suppose the given graph is an [AL] zero divisor graph.
- Consider products and sums of the elements

Proof Strategies

- Suppose the given graph is an [AL] zero divisor graph.
- Consider products and sums of the elements
- Look for contradictions that arise with these elements

Proof Strategies

- Suppose the given graph is an [AL] zero divisor graph.
- Consider products and sums of the elements
- Look for contradictions that arise with these elements

Proof Strategies

- Suppose the given graph is an [AL] zero divisor graph.
- Consider products and sums of the elements
- Look for contradictions that arise with these elements
 - A vertex is equivalent to zero

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Proof Strategies

- Suppose the given graph is an [AL] zero divisor graph.
- Consider products and sums of the elements
- Look for contradictions that arise with these elements
 - A vertex is equivalent to zero
 - Two vertices are the same

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Proof Strategies

- Suppose the given graph is an [AL] zero divisor graph.
- Consider products and sums of the elements
- Look for contradictions that arise with these elements
 - A vertex is equivalent to zero
 - Two vertices are the same
 - A zero divisor appears that is not on the graph

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Proof Strategies

- Suppose the given graph is an [AL] zero divisor graph.
- Consider products and sums of the elements
- Look for contradictions that arise with these elements
 - A vertex is equivalent to zero
 - Two vertices are the same
 - A zero divisor appears that is not on the graph
 - Etc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Non-Existence Proof

Claim

This graph cannot be realized as a zero-divisor graph of a ring.

ヘロン ヘロン ヘロン ヘロン

æ

Non-Existence Proof

Claim

This graph cannot be realized as a zero-divisor graph of a ring.

Claim

This graph cannot be realized as a zero-divisor graph of a ring.

Proof.

• Suppose it is realized as $\Gamma(R)$

▲□▶ ▲□▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ◆) Q ()

Claim

This graph cannot be realized as a zero-divisor graph of a ring.

- Suppose it is realized as $\Gamma(R)$
- Now consider $a \cdot d$. We know $ad \neq 0$ and that it is annihilated by elements b, c, and e.

Claim

This graph cannot be realized as a zero-divisor graph of a ring.

- Suppose it is realized as $\Gamma(R)$
- Now consider $a \cdot d$. We know $ad \neq 0$ and that it is annihilated by elements b, c, and e.

Claim

This graph cannot be realized as a zero-divisor graph of a ring.

- Suppose it is realized as $\Gamma(R)$
- Now consider $a \cdot d$. We know $ad \neq 0$ and that it is annihilated by elements b, c, and e.

• e.g.
$$(ad) \cdot b = (ab) \cdot d = 0 \cdot d = 0$$

Claim

This graph cannot be realized as a zero-divisor graph of a ring.

- Suppose it is realized as $\Gamma(R)$
- Now consider $a \cdot d$. We know $ad \neq 0$ and that it is annihilated by elements b, c, and e.
 - e.g. $(ad) \cdot b = (ab) \cdot d = 0 \cdot d = 0$
- No element is annihilated by b, c, and e. Therefore, this cannot be $\Gamma(R)$ for any commutative R.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Non-Existence Proof

Claim

This graph cannot be realized as a zero-divisor graph of a ring.

ヘロト 人間 とくほ とくほと

æ

DQC

Non-Existence Proof

Claim

This graph cannot be realized as a zero-divisor graph of a ring.

ヘロト 人間ト 人注ト 人注ト

æ

900

Non-Existence Proof

Claim

This graph cannot be realized as a zero-divisor graph of a ring.

Proof.

• Suppose it is realized as $\Gamma(R)$

Claim

This graph cannot be realized as a zero-divisor graph of a ring.

- Suppose it is realized as $\Gamma(R)$
- Consider a + c. We know a + c is annihilated by b and e, but not d.

Claim

This graph cannot be realized as a zero-divisor graph of a ring.

- Suppose it is realized as $\Gamma(R)$
- Consider a + c. We know a + c is annihilated by b and e, but not d.

Claim

This graph cannot be realized as a zero-divisor graph of a ring.

- Suppose it is realized as $\Gamma(R)$
- Consider a + c. We know a + c is annihilated by b and e, but not d.
 - e.g. $(a + c) \cdot d = ad + cd = ad + 0 = ad \neq 0$

Claim

This graph cannot be realized as a zero-divisor graph of a ring.

- Suppose it is realized as $\Gamma(R)$
- Consider a + c. We know a + c is annihilated by b and e, but not d.
 - e.g. $(a + c) \cdot d = ad + cd = ad + 0 = ad \neq 0$
 - e.g. $(a+c) \cdot b = ab + cb = 0 + 0 = 0$

Claim

This graph cannot be realized as a zero-divisor graph of a ring.

- Suppose it is realized as $\Gamma(R)$
- Consider a + c. We know a + c is annihilated by b and e, but not d.
 - e.g. $(a + c) \cdot d = ad + cd = ad + 0 = ad \neq 0$
 - e.g. $(a+c) \cdot b = ab + cb = 0 + 0 = 0$
- Thus, a + c must be a.

Claim

This graph cannot be realized as a zero-divisor graph of a ring.

- Suppose it is realized as $\Gamma(R)$
- Consider a + c. We know a + c is annihilated by b and e, but not d.
 - e.g. $(a + c) \cdot d = ad + cd = ad + 0 = ad \neq 0$
 - e.g. $(a+c) \cdot b = ab + cb = 0 + 0 = 0$
- Thus, a + c must be a.

Claim

This graph cannot be realized as a zero-divisor graph of a ring.

Proof.

- Suppose it is realized as $\Gamma(R)$
- Consider a + c. We know a + c is annihilated by b and e, but not d.
 - e.g. $(a + c) \cdot d = ad + cd = ad + 0 = ad \neq 0$
 - e.g. $(a + c) \cdot b = ab + cb = 0 + 0 = 0$

• Thus, a + c must be a. But this implies c = 0, a contradiction.

Claim

This graph cannot be realized as a zero-divisor graph of a ring.

Proof.

- Suppose it is realized as $\Gamma(R)$
- Consider a + c. We know a + c is annihilated by b and e, but not d.
 - e.g. $(a + c) \cdot d = ad + cd = ad + 0 = ad \neq 0$
 - e.g. $(a + c) \cdot b = ab + cb = 0 + 0 = 0$
- Thus, a + c must be a. But this implies c = 0, a contradiction.
- Therefore, this graph is not $\Gamma(R)$ for any commutative R.

▲ロト ▲暦 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 国 ▶ ▲ 国 ▶

The Remaining Graphs

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 ● ● ●

The Remaining Graphs

The Remaining Graphs

Graphs Realized as AL Graphs

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへ()・
Mulay Graphs

S. Mulay defined his own version of a zero-divisor graph in terms of equivilance classes of zero-divisors rather than the the zero-divisors themselves.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Mulay Graphs

S. Mulay defined his own version of a zero-divisor graph in terms of equivilance classes of zero-divisors rather than the the zero-divisors themselves.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Mulay Graphs

S. Mulay defined his own version of a zero-divisor graph in terms of equivilance classes of zero-divisors rather than the the zero-divisors themselves.

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Larger Graphs

Mathematicians have discovered the possible [AL] zero-divisor graphs of up to 14 vertices. Past that, there are a significantly larger number of graphs to consider.

Work can be done to find more ways of being able to eliminate more "types" of graphs.