
)15)25 )36)46 )57)67 )78)88 )98)109 )119)1210 )1310)1411

ZERO DIVISOR GRAPHS

CARLOS LOPEZ, ALONZA TERRY, AND ALAINA WICKBOLDT

Abstract. We define and study the zero divisor graphs, in par-
ticular the Anderson and Livingston zero divisor graphs. We will
discuss how to create them and what methods we used to find pat-
terns in these graphs. We also discuss the behavior of the ring as
a whole and of it’s parts.

1. Introduction

1.1. Creating a Zero Divisor Graph. During this project we stud-
ied the properties of zero divisor graphs. First we will define some Ring
Theory and then some Graph theory. During this project we focused
mainly on the Anderson and Livinston graphs. Then we will discuss
the methods we used to come to our conclusions. Then we will discuss
our findings and provide an analysis for the different types of behavior
of these graphs. We only looked at graphs for the integers modulo 100.

2. Background

2.1. Ring Theory Definitions.

(1) ring R is a set together with two binary operations + and
· (called addition and multiplication) satisfying the following
axioms:

A. R is an Abelian group under +; i.e.,
i. For any a, b in R, a+b is in R. (closure of addition)

ii. For any a, b, c in R, a + (b + c) = (a + b) + c. (as-
sociativity of addition)

iii. There exists 0 in R such that a + 0 = 0 + a = a for
all a in R. (additive identity)

iv. For any a in R, there exists an element b in R such
that a + b = b + a = 0. (additive inverses)

v. For all a, b in R, a + b = b + a. (abelian condition)
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B. For any a, b in R, ab is in R. (closure of multiplication)
C. For any a, b, c in R, a(bc) = (ab)c. (associativity of mul-

tiplication)
D. For any a, b, c in R, a(b+c) = ab+ac and (a+b)c = ac+bc.

(distributive property)
(2) R has unity if 1 is in R such that a · 1 = 1 · a for all a in R.
(3) A ring is commutative if multiplication is commutative.
(4) A unit is a non-zero element u in a commutative ring with

1, such that there is another non-zero element v of the ring
satisfying u∗v = 1.

(5) A zero divisor of a commutative ring is a non-zero element r such
that rs = i for some other non-zero element s of the ring. If the ring
R is commutative, then rs = 0⇔ sr = 0.

(6) An integral domain is a commutative ring within 1 such that R has
no zero divisors.

(7) A field is an integral domain in which every non-zero element is a unit.

2.2. Graph Theory Definitions.

(1) A graph consists of a set of vertices, a set of edges, and an
incident relation describing, which vertices are adjacent (i.e.,
joined by an edge) to which. G = (V,E).

(2) A path of length n between two vertices v and w is a finite
sequence of vertices u0, u1, ..., un such that v = u0, w = un, and
ui−1 and ui are adjacent for all 1 ≤ i ≤ n.

(3) A graph is connected if there is a path between every pair of
vertices of the graph.

(4) The diameter of a connected graph is the greatest distance
between any two vertices, where, by ”greatest distance,” we
mean how many edges we ”must” travel.

(5) The degree of a vertex is the number of edges issuing from it.
(6) A vertex is called a end (leaf, pendent) if the degree is 1.
(7) A graph is complete, if every vertex in the graph is adjacent

to each other vertex in the graph.
(8) A cycle in a graph is a path V1, V2, ..., Vk[k ≥ 3] together with

the edge VkV1.
(9) If a graph is a cycle, then the graph is called a cycle graph.

(10) A graph which does not contain a cycle is called acyclic.

2.3. Definitions of Zero Divisor Graphs.

(1) (Beck) The zero divisor graph of a commutative ring R with
1 is a simple graph whose set of vertices consists of all elements
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of the ring, with an edge defined between a and b if and only if
ab = 0.

(2) (Anderson and Livingston) Γ(R) The idea of Becks simple graphs
are further expanded where zero divisors are represented. There-
fore, any element of the ring which is not a zero divisor is not
shown. the diameter is three.

(3) (Mulay) ΓE The zero divisor graph is determined by equiv-
alence classes of commutative ring is a simple graph whose
set of vertices consisting of all equivalence classes of zero divisors
(where ab̃ ⇔ ann(a) ⊂ ann(b)) with an edge defined between
[a]&[b]⇔ a=̃0 for any representation of the classes.

(4) A graph is complete bipartite is a graph whose vertex set
can be partitioned into 2 disjoint subset (ui) and (vj) such each
ui is adjacent to every vj, but no two ui’s are adjacent but no
two vj’s are adjacent.

3. Our Methods

We were presented with the task to observe the behavior of various
Anderson and Livingston Zero Divisor Graphs. Our goal was to study
the patterns of these graphs. At first, the way we approached this
task was by drawing as many graphs as we could. After many tedious
drawings we realized that once you got into larger numbers, the graphs
became exceedingly complex. Another task was the shape the graphs
in order to give a more clear appearance. Although some large num-
bers were exceedingly difficult to draw by hand, some were fairly easy.
For example, the number 33. This graph and others like Γ(Z22) and
Γ(Z14) lead us to our first conclusion; drawing the graphs of two primes
multiplied together is relatively easy. Is consists of a complete bipartite
graph where one side has multiples of the first prime and the other had
multiples of the second prime.

This conclusion lead us to believe that the graphs would not be more
complex simply because they were larger, but because of the complexity
of their prime factorizations.

As we began shaping more and more of the graphs the evidence con-
firmed our conjecture. So we began the task of grouping numbers by
their prime factorizations. This took a while to complete but finally
we came up with 15 different groupings which are explained in detail
below.
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After clarifying these categories we then observed that drawing a Zero
Divisor Graph for any number is not as complex as we thought. Each
category can be broken down into a series of steps that are in the
following section.

The we discovered that Brendan Kelly and Elizabeth Wilson had de-
veloped some mathematica code that could be used to find any zero
divisor graph desired. This sped up the process of finding patterns and
also confirmed our conjectures.

Our mentor Dave Chapman led us to a program called GAP4. We
used this program to more efficiently process our observations of the
groupings based on prime factorizations. Using our information from
drawings and GAP4, we began to rearrange the mathematica code w
ewere given in order to take our loops. After this accomplishment, our
mentor and Professor Sandra Spiroff began to inquire if we might be
able to write a program to produce a graph that some would claim is
a more proficient graph to use, the Mulay Graph. Using our previous
program, we began manipulating the coding and came across an even
more glorious success. We were able to produce a Mulay Graph for any
inputted number n.

4. Patterns and Findings

We found some interesting patterns in these Anderson and Livinston
graphs.The notation used for Anderson and Livingston Graphs is Γ(Zn).
The best way to break these down into categories is by looking at their
prime factorization. The more complex the prime factorization, the
more complex the graph will be. Let p and q and r represent three
distinct primes for all of the following cases.

4.1. One Prime. When drawing the Anderson and Livingston graph
this is trivial because we eliminate the zero divisors 0 and 1. These
graphs have no vertices or edges.

All numbers in this category < 100 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,

41,43, 47,53,59,61,67,71,73,79,83,89, and 97.

4.2. Two Primes. Let this be represented by pq. There are two cases
for this, p and q can be distinct or they can be the same.

4.2.1. The distinct case. If p and q are distinct then the graph will
be a complete bipartite graph. On one side of the graph we can list
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all the factors of the first prime number and on the other side we can
list all the factors of the second prime. Then we construct a complete
bipartite graph.

Example. Γ(Z33)

Figure 1. Γ(Z33)

All numbers in this category < 100 are 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38,

39,46,51,55,57,58,62,65,69,74,77,82,85,86,87,91,93,94,95.

4.2.2. The non-distinct case. Take the case p2. This will be a complete
graph with p− 1 vertices. Every vertex will be a multiple of p < p2.

Example. Γ(Z25)

Figure 2. Γ(Z25)

All numbers in this category < 100 are 9, 25, and 49.

4.3. Three Primes. This can be represented three different ways. p3,
p2q, and pqr.

4.3.1. The p3 case. This graph will be a complete bipartite graph with
one side having one set of vertices that are multiples of p2. The other
set of vertices being all remaining multiples of p.

Example. Γ(Z27)

All numbers in this category < 100 are 8 and 27.
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Figure 3. Γ(Z27)

4.3.2. The p2q case. The center of this graph will be (p2q)/2. The
vertices connected to (p2q)/2 will be multiples of pq. These multiples
will form a complete bipartite graph with the multiples of p that are
remaining. Connected to (p2q)/2 will be all remaining multiples of q.
The tail vertices are qr where r is relatively prime to p. The head
vertices are rp where r is relatively prime to q. The center node is 32,
or p2. The gill vertices are multiples of pq.

Example. Γ(Z18)

Figure 4. Γ(Z18)

Note that all of the vertices on the right are combinations of the primes
p and q.

All numbers in this category < 100 are 12, 18, 20, 28, 44, 45, 52, 76,

50,63,68,75,92,98and99.

4.3.3. The pqr case. The first number like this is 30. On the right side
of the graph are the multiples of 2 that do not contain a factor of 3. At
the center is half of pqr. Each grouping of terms is a group of factors
that have to do with the multples of p, not associated with q or r, then
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the multiples of r not associated with p or q, and then the multiples of
pq.

Example. Γ(Z30)

Figure 5. Γ(Z30)

All numbers in this category < 100 are 30, 42, 66, 70, and 78.

4.4. Four Primes. This can be represented four different ways. p4,
p3q p2qr, and p2q2.

4.4.1. The p4 case. The center of this graph will be multiples of p3.One
one side of these vertices will be a complete graph with vertices of all
”‘unused”’ multiples of p3. On the other side side of these vertices will
be a complete bipartite graph with all remaining multiples of 3.

Example. Γ(Z81)

Figure 6. Γ(Z81)

All numbers in this category < 100 are 16 and 81.

4.4.2. The p3q case. This graph is very complex. We noticed that the
higher the power that the prime is raised to, the more complex the
graph will be if it is combined with two different primes in it’s prime
factorization. Again each category can be broken down into multiples
of p, q, pq, p2qp3,and pq
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Example. Γ(Z24)

Figure 7. Γ(Z24)

All numbers in this category < 100 are 24, 40, 54, and 56.

4.4.3. The p2qr case. Example. Γ(Z60)

Figure 8. Γ(Z60)

4.4.4. The p2q2 case. Example. Γ(Z36)

Figure 9. Γ(Z36)

All numbers in this category < 100 are 36 and 100
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4.5. Five Primes. There are three categories to look at where the
number is less than 100; p5,p4q and p3q2. Another pattern we noticed
is that when there is one prime raised to a high power, the graph is
more simple than if there are two distinct primes raised to an exponent.
An example below is Γ(Z32). This graph is less complex than Γ(Z24)
because 32 is one prime (2) raised to the 5th power, while 24 is two
distinct primes (23 and 3) combined.

4.5.1. The p5 case. This is simply a two sided graph with the center
being p5/2 and on one side a complete graph with multples of p2, p3, ...,
then on the other side will be all remaining multples of p.

Example. Γ(Z32)

Figure 10. Γ(Z32)

All numbers in this category < 100 are 32 and 81.

4.5.2. The p4q case. These graphs are some of the more compolex
graphs with n < 100 because we are getting into comlex combinations
of prime numbers. Example. Γ(Z48)

Figure 11. Γ(Z48)

All numbers in this category < 100 are 48, 64, 80.
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4.5.3. The p3q2 case. There is only one graph like this.

Example. Γ(Z72)

Figure 12. Γ(Z72)

4.6. Six Primes. There are only two categories to look at here where
n is < 100

4.6.1. The p6 case. The only number that falls into this category < 100
is 64.

Example. Γ(Z64)

Figure 13. Γ(Z64)
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4.6.2. The p5q case. The only number that falls into this category <
100 is 96. This is also the most complex graph that we will deal with
because it is the highest combination of primes.

Example. Γ(Z96)

Figure 14. Γ(Z96)
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5. Conclusion

We found that our conjecture about the complexity of the graph being
directly related tot he complexity of the prime factorization of a number
is correct. The fewer primes that a number can be broken down into
the less complex the graph will be. Every graph can be construced by
hand, or by mathematica programming, but there is a simple procedure
for constructing any graph < 100 as described in detail above.
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