
Background Information
Nonautonomous to Autonomous

Equilibrium Point
Reducing System
Stability Analysis

Stability Analysis of an SIR Epidemic Model

Scott Dean, Kari Kuntz,
T’Era Hartfield, and Bonnie Roberson

Department of Mathematics
Louisiana State University

Baton Rouge, LA

SMILE at LSU, July 2009

Scott Dean, Kari Kuntz, T’Era Hartfield, and Bonnie Roberson Stability Analysis of an SIR Epidemic Model



Background Information
Nonautonomous to Autonomous

Equilibrium Point
Reducing System
Stability Analysis

Introduction
Background

Introduction

The SIR epidemic model is a dynamical system, as it can
vary with respect to time for up to all three variables
When conducting a stability analysis, we ask the following
questions:
Are there any constant solutions?
If so, do solutions near the constant move toward or away
from the constant solution?
What happens to solutions as t approaches infinity?
Do any solutions oscillate?
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If there is a constant solution, the phase portarait of the
dynamical system will either show the solutions having
vectors tending either toward or away from the equilibrium
value.
If the values of the system near the equilibrium value all
tend toward the point, the equilibrium point is considered
stable, or an attractor.
If the values of the system near the equilibrium value all
tend away from the value, then the point is considered
unstable, or a repelling point.
In some cases, some values tend toward the equilibrium
point, and some tend away from it. This is called a saddle
point. It is unstable.
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Yet other cases show an equilibrium point at the origin, but
all trajectories near the equilibrium point stay a small
distance away. This is a stable equilibrium point, but it is
not globally asymptotically stable.
The case where both eigenvalues are real, negative, and
distinct produces a phase portrait that shows all
trajectories tending toward the equilibrium point as t →∞,
the value of x(t) gets small, so it is a globally stable
equilibrium point.
When both eigenvalues are real, negative, and equal, the
phase portrait shows a globally stable equilibrium point if
the two eigenvectors are linearly independent.
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All individals in a given population are in the S group by
birth, but are gradually "removed" by either being infected
and quaranitned or being quarantined prior to infection.
The birth rate is taken into account with the S’ group; a
constant rate of individuals being added to the susceptible
population is assumed.
The death rate is taken into account with the R’ group; the
per-capita death-rate is simply multiplied by the number of
individuals considered "removed" (it is a function of how
many individuals are removed, not constant like the birth
rate).
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The model takes into account the fact that not all contacts
between the susceptible group and the infectious group
are "adequate contact" or sufficient to cause infection.
The "basic reproduction ratio" b

g gives the researcher an
idea of how the epidemic will progress:
If it is greater than 1, the number of individuals infected is
greater than the number of individuals recovering, so the
disease will continue to spread.
If it is less than (or equal to) 1, the number of individuals
recovering is greater than the number of individuals
infected, so the disease will spread more slowly.
This is a very important parameter in epidemiology.
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N is a constant; it is the total number of the population. The
derivative of N is zero. This is very important for solving the
system of differential equations 0 = S′ + I′ + R′.
The initial value of t is zero, but for the stability analysis we
assume t to be the open interval in the neighborhood of
(0,0).
GLOBAL ASYMPTOTIC STABILITY: Equlibrium values for
the system approach the same value from all sides when
looking at the phase portrait of the dynamical system.
Phase portrait: a "sketch" of the trajectories of a dynamical
system, showing the direction of the motion of the
point(x,y) as t increases. The direction is indicated by the

velocity vector
dx
dt
dy
dt

.
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Why do we use this model?
Epidemiologists use this model because it allows more
flexibility than the logistic model, which allows for only
differing birth and death rates.
It allows the ability to form conclusions regarding the
likelihood of a contact resulting in an infection (which tells
researchers how quickly people move from the S group to
the I group).
Researchers can also observe the rate where people move
from the I group to the R group, showing how quickly
individuals move from "infectious" to "removed".
Once an individual moves into the R group, he or she is
incapable of being reinfected or infecting others.
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An example of this scenario is smallpox:
every person born (prior to being innoculated, which is not
considered here) is equally prone to infection, so included
in the S group.
Once an individual is in the I group, or infectious, they are
capable of spreading the disease to others based on the
basic reproduction ratio.
They remain in the I group until they either recover (g) or
die (m), both of which occur proportionally to the number of
people in the I group.
Those that are quarantined either before or after infection,
and are thus not able to be part of the I class by
contributing to the infection of others, are considered
removed, or are in the R group.
The sum of these three groups comprises the entire
population N, which is a positive constant. Once a person
is removed, dies, or recovers, he or she is incapble of
catching or transmitting the disease again.
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To properly understand the behavior of the SIR
model we must first perform a complete stability
analysis of the model. This task includes:
• finding the limit system
• finding upper and lower bounds of the

system
• finding an equilibrium point
• applying appropriate theorems to determine

local or global stability
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We must also determine whether the
equilibrium point is stable or asymptotically
stable.
For our model, we found that the system is
globally asymptotically stable.
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Consider the model

S′(t) = Λ− βS
1
N
− µS

I′(t) = βS
1
N
− (µ+ γ)I

R′(t) = γI − µR,

where

N(t) = S(t) + I(t) + R(t).
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To perform the stability analysis of our system, we will employ
an autonomous system instead of the nonautonomous system
we were given.

Definition
Consider the following systems:

d(X )

dt
= F (t ,X ) (1)

d(Y )

dt
= G(X ) (2)

Equation 1 is called asymptotically autonomous with the limit
system, Equation 2, if F (t ,X )→ G(X ) as t →∞ for X in Rn.
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Limit System

• Utilizing the given equation N(t) = S(t) + I(t) + R(t),
we take the derivative of each side and simplify.

• This yields the solution N ′(t) = Λ− µN(t).

• After differentiation the solution is N = Λ
µ

+ c
eµt .

• limt→∞( Λ
µ

+ c
eµt ) = Λ

µ
.

• Therefore, N = Λ
µ

for large values of t .
• Thus, we have a limit system, and we can treat N as

a constant, Λ
µ
.
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Lower Bound

• N(t) is the population at any given time.

• This must always be positive because a
negative population does not make sense.
Therefore, N > 0.

• This implies that S(t) > 0, I(t) > 0, and
R(t) ≥ 0.

• Thus, the lower bound for S, I, and R is 0.
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Upper Bound

• To find the upper bound of the system, we
will use the limit system found earlier.

• As discussed earlier N can now be treated
as a constant, N = Λ

µ , for large values of t .

• However, for other values of t , N = Λ
µ + c

eµt .

• S, I, and R are separately ≤ N.
• Therefore, S, I, and R ≤ Λ

µ + c
eµt .
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Confirmation

• We have found the limit system for the
model.

• We have found the lower bound (S, I, and R
> 0) and the upper bound (S, I, and
R ≤ Λ

µ + c
eµt ).

• We can now apply the following Theorem :
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Theorem

d(X )

dt
= F (t ,X ) (3)

d(Y )

dt
= G(X ) (4)

where Equation 4 is the limit system of Equation 3.

Theorem
If solutions of Equation 3 are bounded and the equilibrium X of
Equation 4 is globally asymptotically stable, then any solution
X(t) of Equation 3 satisfies X (t)→ X as t →∞.

Therefore, we may now consider only the limit system.
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We now need to find the equilibrium points for
these equations.

Definition
Given an equation dx

dt = f (x), a point x∗ is an equilibrium
point if f (x∗) = 0.
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We can get the equilibrium points by setting the equations in

the model equal to zero and solving the system for S, I, and R.

By doing so, we obtain:

S =
Λ2

µ(β + Λ)

I =
βΛ

(β + Λ) + (µ + γ)

R =
γβΛ

µ(β + Λ)(µ + γ)
.
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We know that this is the only equilibrium
point because the equation for S is linear.
Therefore, the equilibrium point is:

(
Λ2

µ(β + Λ)
,

βΛ

(β + Λ) + (µ + γ)
,

γβΛ

µ(β + Λ)(µ + γ)
).
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• We rewrite N = S + I + R into R = N−S− I.

• Substituting this into the system yields:

S′ = Λ− βS
N
− µS,

I ′ =
βS
N
− (µ + γ)I,

R′ = I(γ + µ)− µ(N − S).

• R′ may be disregarded.
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Now that we have simplified our system down to
two autonomous equations,

S′(t) = Λ− βS
1
N
− µS

and
I ′(t) = βS

1
N
− (µ + γ)I,

we can analyze the stability using the proper
Lyapunov function.
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Lyapunov Function

Definition
A function V (x , y) is said to be positive definite on a region D
containing the origin if for all (x , y) 6= (0,0), V (x , y) > 0.
V (x , y) is said to be negative definite on a region D containing
the origin if for all (x , y) 6= (0,0), V (x , y) < 0.

Definition
A function V (x , y) is said to be a Lyapunov Function on an
open region D if the function is continuous, positive definite,
and has continuous first-order partial derivatives on D.
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Theorem

Theorem
If there exists a Lyapunov function V (x , y), dependent on a
system dx

dt = f (x , y) and dy
dt = g(x , y) with equilibrim point

(x , y) = (0,0), and dV
dt is negative definite on an open region D

containing the origin, then the zero solution of the system is
asymptotically stable.

When D encompasses all possible values of (x , y) and follows
all of the specified criteria above, the projected stability of the
system is said to be global.
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V

A possible Lyaponov function that is very common is

V = x2 + y2.

We are interested in showing not only local, but global
asymptotic stability.
This means that our chosen V will have to satisfy the
criteria of a Lyapunov function over the entire region
D = (0,∞)x(0,∞) for which S x I is defined.
This criteria includes
i) V (0,0) = (0,0)
ii) V (x , y) > 0 ∀ (x , y) 6= (0,0) on D (positive definite).
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Change of Variables

However, this Lyapunov function only works for those systems
with an equilibrium point set at the origin, and as can be seen
looking at our specified region D = (0,∞)x(0,∞), the origin is
not included. This forces us to use a change of variables in
order to utilize the function V = x2 + y2. We take

x = S − Λ2

µ(β + Λ)
,

y = I − βΛ

(β + Λ)(µ+ γ)
.

So

V = (S − Λ2

µ(β + Λ)
)2 + (I − βΛ

(β + Λ)(µ+ γ)
)2.
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Our New D

When redefining our D function for (x,y), it is
shifted to the left, leaving us with
Ds = (− Λ2

µ(β+Λ) ,∞)× (− βΛ
(β+Λ)(µ+γ) ,∞), an open

region including the origin.
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We now check the derivative of our V:

dV
dt

=
∂V
∂S

dS
dt

+
∂V
∂I

dI
dt

= −2[(
µ(β + Λ)

Λ2 )(S− Λ2

µ(β + Λ)
)2+(

(β + Λ)(µ+ γ)

βΛ
)(I− βΛ

(β + Λ)(µ+ γ)
)2].

The overall sign of dV
dt is determined by the factor of -2 outside

the brackets.

Furthermore, the only point that will make this equation equal to
zero is the equilibrium point (x , y) = (0,0), which corresponds to
the values S = Λ2

µ(β+Λ) and I = βΛ
(β+Λ)(µ+γ) .
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Global Asymptotic Stability

So, dV
dt is negative definite in R2.

This implies that dV
dt is negative definite on

our specified interval D.
Therefore, our system is globally
asymptotically stable.
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