Section 1.4b Quadratic Equations

Review of Simplifying Square Roots LSU Video "Simplifying Square Roots" is found on the course website.

Review of Evaluating Expressions that Contain Exponents

LSU Video "Exponents" (0:00 – 7:10) is found on the course website.

Objective 4: Solving Quadratic Equations Using the Quadratic Formula

By solving the general quadratic equation $ax^2 + bx + c = 0$, $a \ne 0$ using a method called completing the square, we obtain **the quadratic formula** which can be used to solve *any* quadratic equation.

The Quadratic Formula: The solution to the quadratic equation $ax^2 + bx + c = 0$, $a \ne 0$ is given by the formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Objective 5: Using the Discriminant to Determine the Type of Solutions of a Quadratic Equation

Given a quadratic equation of the form $ax^2 + bx + c = 0$, $a \ne 0$, the expression $b^2 - 4ac$ is called the **discriminant**. Knowing the value of the discriminate can help us determine the number and nature of the solutions to a quadratic equation.

The Discriminant: Given a quadratic equation $ax^2 + bx + c = 0$, $a \ne 0$, the expression $D = b^2 - 4ac$ is called the **discriminant**.

If D > 0, then the quadratic equation has two real solutions.

If D < 0, then the quadratic equation has two non-real solutions.

If D = 0, then the quadratic equation has exactly one real solution.