Section 3.5 Composite Functions

Review of Evaluating Functions for Given Inputs See section 3.1.

Review of Simplifying Rational Expressions

A rational number is the quotient of two integers. A **rational expression** is the quotient of two polynomial expressions. A simplified rational expression has the form $\frac{P}{Q}$ where P and Q are polynomials such that $P \neq 0$ and the degree of Q is greater than or equal to 1.

Objective 4: Forming and Evaluating Composite Functions

Definition: Given functions f and g, the **composite function**, $f \circ g$ (also called the **composition of f** and g) is defined by $(f \circ g)(x) = f(g(x))$ provided g(x) is in the domain of f.

The composition of f and g does not equal the product of f and g: $(f \circ g)(x) \neq fg(x)$. Also, the composition of f and g does not necessarily equal the composition of g and f though this equality does exist for certain pairs of functions.