Section 5.2 Logarithmic Functions

Objective 1: Understanding the Definition of a Logarithmic Function

Every exponential function of the form $f(x) = b^x$, where b > 0 and $b \ne 1$, is one-to-one and thus has an inverse function. The graph of $f(x) = b^x$, b > 1 and its inverse, f^{-1} , are shown below. Recall from Section 5.1, the graph of $f(x) = b^x$, b > 1 contains the points $\left(-1, \frac{1}{b}\right)$, $\left(0, 1\right)$ and $\left(1, b\right)$, and since $b^x \to 0$ as $x \to -\infty$, the x-axis is a horizontal asymptote for the graph. Recall from Section 3.6 that the graph of f^{-1} is obtained by reflecting the graph of f about the line f^{-1} is obtained by reflecting the graph of f^{-1} will contain the points $\left(\frac{1}{b}, -1\right)$, $\left(1, 0\right)$ and $\left(b, 1\right)$, and the f^{-1} axis will be a vertical asymptote for the graph.

To find the equation of f^{-1} , we begin with the process from Section 3.6:

Step 1: Change f(x) to y: $y = b^x$

Step 2: Interchange x and y: $x = b^y$

Step 3: Solve for y: ??

Before we can solve for y, we must introduce the following definition:

Definition: For x > 0, b > 0 and $b \ne 1$, the **logarithmic function with base** b is defined by $y = \log_b x$ if and only if $x = b^y$.

Step 3. Solve for *y*: $x = b^y$ can be written as $y = \log_b x$

Step 4. Change y to $f^{-1}(x)$: $f^{-1}(x) = \log_b x$

Review of Rules of Exponents and Rewriting an Expression in the Form $b^{\it u}$ See Section 5.1a.

Review of Evaluating Expressions with Negative and Rational Exponents

LSU Videos "Negative Exponents" and "Rational Exponents" (0:00 – 16:30) are found on the course website.

Objective 2: Evaluating Logarithmic Expressions

The expression $\log_b x$ is the exponent to which b must be raised to in order to get x.

Objective 3: Understanding the Properties of Logarithms

General Properties of Logarithms

For b > 0 and $b \ne 1$,

- (1) $\log_b b = 1$ and
- (2) $\log_b 1 = 0$.

Cancellation Properties of Exponentials and Logarithms

For b > 0 and $b \ne 1$,

(1)
$$b^{\log_b x} = x$$
 and

(2)
$$\log_b b^x = x$$
.

Objective 4: Using the Common and Natural Logarithms

Definition: For x > 0, the **common logarithmic function** is defined by $y = \log x$ if and only if $x = 10^y$.

Definition: For x > 0, the natural logarithmic function is defined by $y = \ln x$ if and only if $x = e^y$.

Objective 5: Understanding the Characteristics of Logarithmic Functions

Characteristics of Logarithmic Functions

For b > 0 and $b \ne 1$, the logarithmic function with base b is defined by $y = \log_b x$.

The domain of $f(x) = \log_b x$ is $(0, \infty)$ and the range is $(-\infty, \infty)$. The graph of $f(x) = \log_b x$ has one of the following two shapes depending on the value of b:

The graph of $y = \log_b x$, b > 0 and $b \ne 1$ has the following properties:

- 1. The graph intersects the x-axis at (1,0).
- 2. The graph contains the points (b,1) and $(\frac{1}{b},-1)$.
- 3. If b > 1, the graph is increasing on the interval $(0, \infty)$. If 0 < b < 1, the graph is decreasing on the interval $(0, \infty)$.
- 4. The *y*-axis (x = 0) is a vertical asymptote.
- 5. The function is one-to-one.

Review of Using Transformations to Graph Functions See Section 3.4.

Objective 6: Sketching the Graphs of Logarithmic Functions Using Transformations

The graph of $f(x) = \log_2(x-1)$ can be obtained by horizontally shifting the graph of $f(x) = \log_2 x$ to the right one unit. The graph of the function $f(x) = \log_2 x$ is shown below on the left. It contains the points $\left(\frac{1}{2}, -1\right)$, $\left(1, 0\right)$ and (2, 1) and has vertical asymptote x = 0. To shift the graph of this function right one unit, add 1 to each of the x-coordinates of the points on the graph. The resulting graph of $f(x) = \log_2(x-1)$, shown below on the right, contains the points $\left(\frac{3}{2}, -1\right)$, $\left(2, 0\right)$ and $\left(3, 1\right)$ and has vertical asymptote x = 1. The domain of $f(x) = \log_2(x-1)$ is $\left(1, \infty\right)$ and the range is $\left(-\infty, \infty\right)$.

Review of Solving Linear Inequalities of the form $ax + b \ge 0$ See Section 1.7.

Objective 7: Finding the Domain of Logarithmic Functions

If $f(x) = \log_b \left[g(x) \right]$, then the domain of f can be found by solving the inequality g(x) > 0.