Section 1.4 Quadratic Equations

In Section 1.1 we studied linear equations of the form ax + b = c, $a \ne 0$. These equations are also known as 1st order polynomial equations. In this section, we will learn how to solve 2nd order polynomial equations. Second order polynomial equations are called **quadratic equations**.

Definition: A **Quadratic Equation in One Variable** is an equation that can be written in the form $ax^2 + bx + c = 0$, $a \ne 0$. Quadratic equations in this form are said to be in *standard form*.

Objective 1: Solving Quadratic Equations by Factoring and the Zero Product Property

Some quadratic equations can be easily **solved by factoring** and by using the following important property.

The Zero Product Property: If AB = 0 then A = 0 or B = 0.

The zero product property says that if two factors multiplied together are equal to zero, then at least one of the factors must be zero.

Objective 2: Solving Quadratic Equations using the Square Root Property

Any quadratic equation of the form $x^2-c=0$ where c>0 can be solved by factoring the left side as $\left(x-\sqrt{c}\right)\left(x+\sqrt{c}\right)=0$ thus the solutions are $x=\pm\sqrt{c}$. Quadratic equations of this form can be more readily solved by using the following **square root property**.

The Square Root Property: The solution to the quadratic equation $x^2-c=0$, or equivalently $x^2=c$, is $x=\pm\sqrt{c}$.

Objective 4: Solving Quadratic Equations Using the Quadratic Formula

The quadratic formula can be used to solve any quadratic equation.

The Quadratic Formula: The solution to the quadratic equation $ax^2 + bx + c = 0$, $a \ne 0$ is given by the formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Objective 5: Using the Discriminant to Determine the Type of Solutions of a Quadratic Equation

Given a quadratic equation of the form $ax^2 + bx + c = 0$, $a \ne 0$, the expression $b^2 - 4ac$ is called the **discriminant**. Knowing the value of the discriminate can help us determine the number and nature of the solutions to a quadratic equation.

The Discriminant: Given a quadratic equation $ax^2 + bx + c = 0$, $a \ne 0$, the expression $D = b^2 - 4ac$ is called the **discriminant**.

If D>0 , then the quadratic equation has two real solutions.

If D < 0 , then the quadratic equation has two non-real solutions.

If $D=\mathbf{0}$, then the quadratic equation has exactly one real solution.