Section 1.4 Quadratic Equations

In Section 1.1 we studied linear equations of the form $ax + b = c$, $a \neq 0$. These equations are also known as 1st order polynomial equations. In this section, we will learn how to solve 2nd order polynomial equations. Second order polynomial equations are called **quadratic equations**.

Definition: A **Quadratic Equation in One Variable** is an equation that can be written in the form $ax^2 + bx + c = 0$, $a \neq 0$. Quadratic equations in this form are said to be in **standard form**.

Objective 1: Solving Quadratic Equations by Factoring and the Zero Product Property

Some quadratic equations can be easily **solved by factoring** and by using the following important property.

The Zero Product Property: If $AB = 0$ then $A = 0$ or $B = 0$.

The zero product property says that if two factors multiplied together are equal to zero, then at least one of the factors must be zero.

Objective 2: Solving Quadratic Equations using the Square Root Property

Any quadratic equation of the form $x^2 - c = 0$ where $c > 0$ can be solved by factoring the left side as $(x - \sqrt{c})(x + \sqrt{c}) = 0$ thus the solutions are $x = \pm \sqrt{c}$. Quadratic equations of this form can be more readily solved by using the following **square root property**.

The Square Root Property: The solution to the quadratic equation $x^2 - c = 0$, or equivalently $x^2 = c$, is $x = \pm \sqrt{c}$.
Objective 4: Solving Quadratic Equations Using the Quadratic Formula

The **quadratic formula** can be used to solve any quadratic equation.

The **Quadratic Formula**: The solution to the quadratic equation \(ax^2 + bx + c = 0, \ a \neq 0 \) is given by the formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \).

Objective 5: Using the Discriminant to Determine the Type of Solutions of a Quadratic Equation

Given a quadratic equation of the form \(ax^2 + bx + c = 0, \ a \neq 0 \), the expression \(b^2 - 4ac \) is called the **discriminant**. Knowing the value of the discriminate can help us determine the number and nature of the solutions to a quadratic equation.

The Discriminant: Given a quadratic equation \(ax^2 + bx + c = 0, \ a \neq 0 \), the expression \(D = b^2 - 4ac \) is called the **discriminant**.

If \(D > 0 \), then the quadratic equation has two real solutions.
If \(D < 0 \), then the quadratic equation has two non-real solutions.
If \(D = 0 \), then the quadratic equation has exactly one real solution.