Section 1.4 Quadratic Equations

In Section 1.1 we studied linear equations of the form $a x+b=c, a \neq 0$. These equations are also known as $1^{\text {st }}$ order polynomial equations. In this section, we will learn how to solve $2^{\text {nd }}$ order polynomial equations. Second order polynomial equations are called quadratic equations.

Definition: A Quadratic Equation in One Variable is an equation that can be written in the form $a x^{2}+b x+c=0, \quad a \neq 0$. Quadratic equations in this form are said to be in standard form.

Objective 1: Solving Quadratic Equations by Factoring and the Zero Product Property

Some quadratic equations can be easily solved by factoring and by using the following important property.

The Zero Product Property: If $A B=0$ then $A=0$ or $B=0$.

The zero product property says that if two factors multiplied together are equal to zero, then at least one of the factors must be zero.

Objective 2: Solving Quadratic Equations using the Square Root Property

Any quadratic equation of the form $x^{2}-c=0$ where $c>0$ can be solved by factoring the left side as $(x-\sqrt{c})(x+\sqrt{c})=0$ thus the solutions are $x= \pm \sqrt{c}$. Quadratic equations of this form can be more readily solved by using the following square root property.

The Square Root Property: The solution to the quadratic equation $x^{2}-c=0$, or equivalently $x^{2}=c$, is $x= \pm \sqrt{c}$.

Objective 4: Solving Quadratic Equations Using the Quadratic Formula

The quadratic formula can be used to solve any quadratic equation.
The Quadratic Formula: The solution to the quadratic equation $a x^{2}+b x+c=0, a \neq 0$ is given by the formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

Objective 5: Using the Discriminant to Determine the Type of Solutions of a Quadratic Equation

Given a quadratic equation of the form $a x^{2}+b x+c=0, \quad a \neq 0$, the expression $b^{2}-4 a c$ is called the discriminant. Knowing the value of the discriminate can help us determine the number and nature of the solutions to a quadratic equation.

The Discriminant: Given a quadratic equation $a x^{2}+b x+c=0, \quad a \neq 0$, the expression $D=b^{2}-4 a c$ is called the discriminant.

If $D>0$, then the quadratic equation has two real solutions.
If $D<0$, then the quadratic equation has two non-real solutions.
If $D=0$, then the quadratic equation has exactly one real solution.

