Section 1.8 Absolute Value Equations and Inequalities

When solving an absolute value equation or inequality, it is necessary to first isolate the absolute value expression.

Objective 1: Solving an Absolute Value Equation

The absolute value of a number x, written as $|x|$, represents the distance from a number x to 0 on the number line. Consider the equation $|x|=5$. To solve for x, we must find all values of x that are 5 units away from 0 on the number line. The two numbers that are 5 units away from 0 on the number line are $x=-5$ and $x=5$ as shown in the figure below. Therefore, the solution set for $|x|=5$ is $\{-5,5\}$.

Objective 2: Solving Absolute Value Inequalities

Solving an Absolute Value "Less Than" Inequality

The solution to the inequality $|x|<5$ consists of all values of x whose distance from 0 is less than 5 units on the number line. See the figure below.

If $|x|<5$, then $-5<x<5$. The solution set is $\{x \mid-5<x<5\}$ in set builder notation or $(-5,5)$ in interval notation.

Solving an Absolute Value "Greater Than" Inequality

For the solution to the inequality $|x|>5$, notice that we are now looking for all values of x that are more than 5 units away from 0 . The solution is the set of all values of x greater than 5 combined with the set of all values of x less than -5 . See the figure below.

If $|x|>5$, then $x<-5$ or $x>5$. The solution set is $\{x \mid x<-5$ or $x>5\}$ in set builder notation or $(-\infty,-5) \cup(5, \infty)$ in interval notation.
$|5 x+1|>3$ is NOT equivalent to $-3>5 x+1>3$. In addition, a common error on this type of problem is to write $5 x+1>-3$ for the first inequality instead of $5 x+1<-3$. Think carefully about the meaning of the inequality before writing it.

ABSOLUTE VALUE EQUATIONS AND INEQUALITY PROPERTIES

Let u be an algebraic expression and let c be a real number such that $c>0$, then:

1. $|u|=c$ is equivalent to $u=-c$ or $u=c$.
2. $|u|<c$ is equivalent to $-c<u<c$.
3. $|u|>c$ is equivalent to $u<-c$ or $u>c$.
