10.1 Polar Coordinates and Polar Equations

OBJECTIVE 1: Plotting Points Using Polar Coordinates

Given an ordered pair $P(r, \theta)$ in the polar coordinate system, the directed distance r can be positive, negative, or zero.

- If $r>0$, then P lies on the terminal side of angle θ.

- If $r<0$, then P lies on the ray opposite of the terminal side of angle θ.

- If $r=0$, then P lies on the pole regardless of the measure of angle θ.

When plotting polar coordinates and sketching polar equations, we will often use a polar grid. A polar grid consists of a series of concentric circles of different radii and pre-sketched angles in standard position. Polar grid paper is available for free online if you wish to print and use it.

OBJECTIVE 2: Determining Different Representations of the Point (r, θ)

- Use the same value of r but choose an angle coterminal to θ. The coordinates will be of the form $(r, \theta+2 \pi k)$ where k is any integer.

- Use the opposite value of r but choose an angle coterminal to the angle located one-half of a rotation from angle θ. The coordinates will be of the form $(-r, \theta+\pi+2 \pi k)$ where k is any integer.

Note: A point located at the pole has coordinates $(0, \theta)$ where θ is any angle.

OBJECTIVE 3: Converting a Point from Polar Coordinates to Rectangular Coordinates

Relationships used when Converting a Point from Polar Coordinates to Rectangular Coordinates:

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

OBJECTIVE 4: Converting a Point from Rectangular Coordinates to Polar Coordinates

Converting Rectangular Coordinates to Polar Coordinates for Points Lying Along an Axis

 In each case, assume that $a>0$.The point $P(x, y)=P(a, 0)$ lies along the positive x-axis and has polar coordinates of $P(r, \theta)=P(a, 0)$.

The point $P(x, y)=P(0, a)$ lies along the positive y-axis and has polar coordinates of $P(r, \theta)=P\left(a, \frac{\pi}{2}\right)$.

The point $P(x, y)=P(-a, 0)$ lies along the negative x-axis and has polar coordinates of $P(r, \theta)=P(a, \pi)$.

The point $P(x, y)=P(0,-a)$ lies along the negative y-axis and has polar coordinates of $P(r, \theta)=P\left(a, \frac{3 \pi}{2}\right)$.

Converting Rectangular Coordinates to Polar Coordinates for Points Not Lying Along an Axis

1. Determine the value of r using the equation $r=\sqrt{x^{2}+y^{2}}$.
2. Plot the point and determine the quadrant in which it lies.
3. Determine the value of the acute reference angle θ_{R} by solving the equation $\tan \theta_{R}=\left|\frac{y}{x}\right|$.
4. Determine the value of θ using θ_{R} and the quadrant in which the point lines. There are four cases:
1) If $P(x, y)$ lies in Quadrant I , then $\theta=\theta_{R}$.
2) If $P(x, y)$ lies in Quadrant II, then $\theta=\pi-\theta_{R}$.
3) If $P(x, y)$ lies in Quadrant III, then $\theta=\theta_{R}+\pi$.
4) If $P(x, y)$ lies in Quadrant IV, then $\theta=2 \pi-\theta_{R}$.

OBJECTIVE 5: Converting an Equation from Rectangular Form to Polar Form

A polar equation is an equation whose variables are r and θ. You will need to use the familiar relationships $x=r \cos \theta, y=r \sin \theta$, and $r^{2}=x^{2}+y^{2}$ to convert equations in x and y (rectangular form) to polar form.

OBJECTIVE 6: Converting an Equation from Polar Form to Rectangular Form

$$
x=r \cos \theta \quad y=r \sin \theta \quad r^{2}=x^{2}+y^{2} \quad \tan \theta=\frac{y}{x}
$$

