# **10.1** Polar Coordinates and Polar Equations

### **OBJECTIVE 1:** Plotting Points Using Polar Coordinates

Given an ordered pair  $P(r,\theta)$  in the polar coordinate system, the **directed distance** r can be positive, negative, or zero.

• If r > 0, then *P* lies on the terminal side of angle  $\theta$ .



• If r < 0, then P lies on the ray opposite of the terminal side of angle  $\theta$ .



• If r = 0, then *P* lies on the pole regardless of the measure of angle  $\theta$ .



When plotting polar coordinates and sketching polar equations, we will often use a **polar grid**. A polar grid consists of a series of concentric circles of different radii and pre-sketched angles in standard position. Polar grid paper is available for free online if you wish to print and use it.



# **OBJECTIVE 2:** Determining Different Representations of the Point $(r, \theta)$

• Use the same value of *r* but choose an angle coterminal to  $\theta$ . The coordinates will be of the form  $(r, \theta + 2\pi k)$  where *k* is any integer.



• Use the opposite value of *r* but choose an angle coterminal to the angle located one-half of a rotation from angle  $\theta$ . The coordinates will be of the form  $(-r, \theta + \pi + 2\pi k)$  where *k* is any integer.



Note: A point located at the pole has coordinates  $(0,\theta)$  where  $\theta$  is **any** angle.

## **OBJECTIVE 3:** Converting a Point from Polar Coordinates to Rectangular Coordinates

Relationships used when Converting a Point from Polar Coordinates to Rectangular Coordinates:



#### **OBJECTIVE 4:** Converting a Point from Rectangular Coordinates to Polar Coordinates

#### Converting Rectangular Coordinates to Polar Coordinates for Points Lying Along an Axis

In each case, assume that a > 0.

The point P(x, y) = P(a, 0) lies along the positive x-axis and has polar coordinates of  $P(r, \theta) = P(a, 0)$ .



The point P(x, y) = P(0, a) lies along the positive y-axis and has polar coordinates of  $P(r, \theta) = P\left(a, \frac{\pi}{2}\right)$ .



The point P(x, y) = P(-a, 0) lies along the negative x-axis and has polar coordinates of  $P(r, \theta) = P(a, \pi)$ .



The point P(x, y) = P(0, -a) lies along the negative y-axis and has polar coordinates of  $P(r, \theta) = P\left(a, \frac{3\pi}{2}\right)$ .



#### Converting Rectangular Coordinates to Polar Coordinates for Points Not Lying Along an Axis

- 1. Determine the value of *r* using the equation  $r = \sqrt{x^2 + y^2}$ .
- 2. Plot the point and determine the quadrant in which it lies.
- 3. Determine the value of the acute reference angle  $\theta_R$  by solving the equation  $\tan \theta_R = \left| \frac{y}{x} \right|$ .
- 4. Determine the value of  $\theta$  using  $\theta_R$  and the quadrant in which the point lines. There are four cases:
  - 1) If P(x, y) lies in Quadrant I, then  $\theta = \theta_R$ .
  - 2) If P(x, y) lies in Quadrant II, then  $\theta = \pi \theta_R$ .
  - 3) If P(x, y) lies in Quadrant III, then  $\theta = \theta_R + \pi$ .
  - 4) If P(x, y) lies in Quadrant IV, then  $\theta = 2\pi \theta_R$ .



### **OBJECTIVE 5:** Converting an Equation from Rectangular Form to Polar Form

A **polar equation** is an equation whose variables are r and  $\theta$ . You will need to use the familiar relationships  $x = r \cos \theta$ ,  $y = r \sin \theta$ , and  $r^2 = x^2 + y^2$  to convert equations in x and y (rectangular form) to polar form.

**OBJECTIVE 6:** Converting an Equation from Polar Form to Rectangular Form

 $x = r \cos \theta$   $y = r \sin \theta$   $r^2 = x^2 + y^2$   $\tan \theta = \frac{y}{x}$