10.2 Graphing Polar Equations

OBJECTIVE 1: Sketching Equations of the Form $r \cos \theta = a$, $r \sin \theta = a$, $ar \cos \theta + br \sin \theta = c$, and $\theta = \alpha$.

For constants *a*, *b*, and *c* and angle α , these graphs are **lines**.

- The graph of $r \cos \theta = a$ is a vertical line.
- The graph of $r \sin \theta = a$ is a horizontal line.
- The graph of $ar \cos \theta + br \sin \theta = c$ is a line with slope $-\frac{a}{b}$ and y-intercept $\frac{c}{b}$.
- The graph of $\theta = \alpha$ is a line through the pole that makes an angle of α with the polar axis.

OBJECTIVE 2: Sketching Equations of the Form r = a, $r = a \sin \theta$, and $r = a \cos \theta$

For a constant $a \neq 0$, these graphs are **circles**.

- The graph of r = a is a circle centered at the pole with radius of length |a|.
- The graph of $r = a \cos \theta$ is a circle centered $\frac{|a|}{2}$ units from the pole on the line $\theta = 0$ with a radius of length $\frac{|a|}{2}$. If a > 0, the center of the circle is to the right of the pole, and if a < 0, the center of the circle is to the left of the pole.
- The graph of $r = a \sin \theta$ is a circle centered $\frac{|a|}{2}$ units from the pole on the line $\theta = \frac{\pi}{2}$ with radius of length $\frac{|a|}{2}$. If a > 0, the center of the circle is above the pole, and if a < 0, the center of the circle is below the pole.

OBJECTIVE 3: Sketching Equations of the Form $r = a + b \sin \theta$ and $r = a + b \cos \theta$

- 1. Identify the general shape using the ratio $\left|\frac{a}{b}\right|$.
 - If $\left|\frac{a}{b}\right| = 1$, then the graph is a cardioid.
 - If $\left|\frac{a}{b}\right| < 1$, then the graph is a limacon with an inner loop that intersects the pole.
 - If $1 < \left| \frac{a}{b} \right| < 2$, then the graph is a limacon with a dimple.
 - If $\left|\frac{a}{b}\right| \ge 2$, then the graph is a limacon with no inner loop and no dimple.
- 2. Determine the symmetry.
 - If the equation is of the form $r = a + b \sin \theta$, then the graph must be symmetric about the line $\theta = \frac{\pi}{2}$.
 - If the equation is of the form $r = a + b \cos \theta$, then the graph must be symmetric about the polar axis.
- 3. Plot the points corresponding to the quadrantal angles $\theta = 0$, $\theta = \frac{\pi}{2}$, $\theta = \pi$, and $\theta = \frac{3\pi}{2}$.
- 4. If necessary, plot a few more points until symmetry can be used to complete the graph.

OBJECTIVE 4: Sketching Equations of the Form $r = a \sin n\theta$ and $r = a \cos n\theta$

The graphs of polar equations of the form $r = a \sin n\theta$ and $r = a \cos n\theta$ where $a \neq 0$ is a constant and $n \neq 1$ is a positive integer are **roses**.

- The graph of $r = a \sin n\theta$ where *n* is odd is a rose with *n* petals. The endpoint of one petal lies along the vertical line $\theta = \frac{\pi}{2}$.
- The graph of $r = a \cos n\theta$ where *n* is odd is a rose with *n* petals. The endpoint of one petal lies along the polar axis.
- The graph of $r = a \sin n\theta$ where *n* is even is a rose with 2*n* petals. None of the petals has an endpoint lying on either the polar axis or the line $\theta = \frac{\pi}{2}$.
- The graph of $r = a \cos n\theta$ where *n* is even is a rose with 2*n* petals. Two of the petals have endpoints lying on the line $\theta = \frac{\pi}{2}$, and two of the petals have endpoints lying on the polar axis.

Steps for Sketching Polar Equations (Roses) of the Form $r = a \sin n\theta$ and $r = a \cos n\theta$ where $a \neq 0$ and $n \neq 1$ is a positive integer.

- 1. Identify the number of "petals".
 - If *n* is even, then there are 2*n* petals.
 - If *n* is odd, then there are *n* petals.
- 2. Determine the length of each petal.
 - The length of each petal is |a| units.
- 3. Determine all angles where an endpoint of a petal lies.
 - If the equation is of the form $r = a \sin n\theta$, then the endpoints occur for angles on the interval $[0, 2\pi)^*$ that satisfy the equations $\sin n\theta = 1$ and $\sin n\theta = -1$.
 - If the equation is of the form $r = a \cos n\theta$, then the endpoints occur for angles on the interval $[0, 2\pi)^*$ that satisfy the equations $\cos n\theta = 1$ and $\cos n\theta = -1$.

*Note that when *n* is odd, it is only necessary to consider angles on the interval $[0, \pi)$. A complete graph is obtained on this interval because the graph will completely traverse itself on the interval $[\pi, 2\pi)$.

- 4. Substitute each angle determined in Step 3 back into the original equation to obtain the appropriate values of *r* for each angle. The ordered pairs obtained represent the endpoints of the rose petals. Plot these points on the graph.
- 5. Determine angles where the graph passes through the pole. These angles serve as a guide when sketching the width of a petal.
 - If the equation is of the form $r = a \sin n\theta$, then the graph passes through the pole when $\sin n\theta = 0$.
 - If the equation is of the form $r = a \cos n\theta$, then the graph passes through the pole when $\cos n\theta = 0$.
- 6. Draw each petal to complete the graph.

OBJECTIVE 5: Sketching Equations of the Form $r^2 = a^2 \sin 2\theta$ and $r^2 = a^2 \cos 2\theta$

The graphs of polar equations of the form $r^2 = a^2 \sin 2\theta$ and $r^2 = a^2 \cos 2\theta$ where $a \neq 0$ is a constant are **lemniscates**.

- The graph of $r^2 = a^2 \sin 2\theta$ is a lemniscate symmetric about the pole and the line $\theta = \frac{\pi}{4}$. The endpoints of the two loops occur when $\theta = \frac{\pi}{4}$ and $\theta = \frac{5\pi}{4}$. The length of the loops is |a|.
- The graph of $r^2 = a^2 \cos 2\theta$ is a lemniscate symmetric about the pole, the horizontal line $\theta = 0$, and the vertical line $\theta = \frac{\pi}{2}$. The endpoints of the two loops occur when $\theta = 0$ and $\theta = \pi$. The length of the loops is |a|.

