Section 2.2 Circles

A circle is the set of all points (x, y) in the Cartesian plane that are a fixed distance r from a fixed point (h, k). The fixed distance r is called the radius of the circle and the fixed point (h, k) is called the center of the circle. To derive the equation of a circle, we use the distance formula that was discussed in the previous section.

The standard form of an equation of a circle with center (h, k) and radius r is $(x-h)^{2}+(y-k)^{2}=r^{2}$.

The standard form of an equation of a circle centered at the origin with radius r is $x^{2}+y^{2}=r^{2}$.

Objective 1: Writing the Standard Form of an Equation of a Circle

Note that when given the diameter of a circle, we can use the midpoint formula to determine the center and the distance formula to find the radius.

Objective 2: Sketching the Graph of a Circle

Once we know the center and radius of a circle, we can easily graph the circle. For additional points, find any intercepts and plot the points.

Note that the y-coordinate of the center of the circle $(x-1)^{2}+(y+2)^{2}=9$ is $k=-2$ because $(y+2)^{2}=(y-(-2))^{2}$.

Objective 3: Converting the General Form of a Circle into Standard Form
The general form of the equation of a circle is $A x^{2}+B y^{2}+C x+D y+E=0$ where A, B, C, D, and E are real numbers, $A=B, A \neq 0$, and $B \neq 0$.

By completing the square, the equation of a circle can be rewritten from general form to standard form.

