Section 3.1 Relations and Functions

Objective 1: Understanding the Definitions of Relations and Functions

Definition: A relation is a correspondence between two sets A and B such that each element of set A corresponds to one or more elements of set B. Set A is called the domain of the relation and set B is called the range of the relation.

Definition: A function is a relation such that for each element in the domain, there corresponds exactly one and only one element in the range. In other words, a function is a well-defined relation.

The elements of the domain and range are typically listed in ascending order when using set notation.

Objective 2: Determine if Equations Represent Functions

To determine if an equation represents a function, we must show that for any value in the domain, there is exactly one corresponding value in the range.

Objective 3: Using Function Notation; Evaluating Functions

When an equation is explicitly solved for y, we say that " y is a function of x " or that the variable y depends on the variable x. Thus, x is the independent variable and y is the dependent variable.

The symbol $f(x)$ does not mean \boldsymbol{f} times \boldsymbol{x}. The notation $f(x)$ refers to the value of the function at \boldsymbol{x}.

The expression $\frac{f(x+h)-f(x)}{h}$ is called the difference quotient and is very important in calculus.

Objective 4: Using the Vertical Line Test

The Vertical Line Test

A graph in the Cartesian plane is the graph of a function if and only if no vertical line intersects the graph more than once.

This graph is a function. (No vertical line intersects the graph more than once).

This graph is not a function. (The graph does not pass the vertical line test).

Objective 5: Determining the Domain of a Function Given the Equation

The domain of a function $y=f(x)$ is the set of all values of x for which the function is defined.

It is very helpful to classify a function to determine its domain.

Definition: The function $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{1} x+a_{0}$ is a polynomial function of degree n where n is a nonnegative integer and $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ are real numbers. The domain of every polynomial function is $(-\infty, \infty)$.

Many functions can have restricted domains.
Definition: A rational function is a function of the form $f(x)=\frac{g(x)}{h(x)}$ where g and h are polynomial functions such that $h(x) \neq 0$. The domain of a rational function is the set of all real numbers such that $h(x) \neq 0$. If $h(x)=c$, where c is a real number, then we will consider the function $f(x)=\frac{g(x)}{h(x)}=\frac{g(x)}{c}$ to be a polynomial.

Definition: The function $f(x)=\sqrt[n]{g(x)}$ is a root function where n is a positive integer.
If n is even, the domain is the solution to the inequality $g(x) \geq 0$.
If n is odd, the domain is the set of all real numbers for which $g(x)$ is defined.

