Section 3.2 Properties of a Function's Graph

Objective 1: Determining the Intercepts of a Function

An intercept of a function is a point on the graph of a function where the graph either crosses or touches a coordinate axis. There are two types of intercepts:

1) The y-intercept, which is the y-coordinate of the point where the graph crosses or touches the y axis.
2) The x-intercepts, which are the x-coordinates of the points where the graph crosses or touches the x-axis.

The y-intercept:

A function can have at most one y-intercept. The y-intercept exists if $x=0$ is in the domain of the function. The y-intercept can be found by evaluating $f(0)$.

The x-intercept(s):

A function may have several (even infinitely many) x-intercepts. The x-intercepts, also called real zeros, can be found by finding all real solutions to the equation $f(x)=0$. Although a function may have several zeros, only the real zeros are x-intercepts.

Objective 2: Determining the Domain and Range of a Function from its Graph

The domain of the graph below is the interval $[a, b)$ while the range is the interval $[c, d]$.

Objective 3: Determining Where a Function is Increasing, Decreasing or Constant

The graph of f rises from left to right on the interval in which f is increasing.
The graph of f falls from left to right on the interval in which f is decreasing.
A graph is constant on an open interval if the values of $f(x)$ do not change as x gets larger on the interval. In this case, the graph is a horizontal line on the interval.

The function shown above is increasing on the interval $(\boldsymbol{c}, \boldsymbol{d})$.
The function shown above is decreasing on the interval ($\boldsymbol{a}, \boldsymbol{b}$).
The function shown above is constant on the interval (b,c).

Objective 4: Determining Relative Maximum and Relative Minimum Values of a Function

When a function changes from increasing to decreasing at a point $(c, f(c))$, then f is said to have a relative maximum at $x=c$. The relative maximum value is $f(c)$.

Similarly, when a function changes from decreasing to increasing at a point $(c, f(c))$, then f is said to have a relative minimum at $x=c$. The relative minimum value is $f(c)$.

The relative minimum occurs at $x=c$, the relative minimum value is $f(c)$.

The relative maximum occurs at $x=c$, the relative maximum value is $f(c)$.

The word "relative" indicates that the function obtains a maximum or minimum value relative to some open interval. It is not necessarily the maximum (or minimum) value of the function on the entire domain.

A relative maximum cannot occur at an endpoint and must occur in an open interval. This applies to a relative minimum as well.

Objective 5: Determining if a Function is Even, Odd or Neither

Definition: A function f is even if for every x in the domain, $f(x)=f(-x)$. Even functions are symmetric about the y-axis. For each point (x, y) on the graph, the point $(-x, y)$ is also on the graph.

Definition: A function f is odd if for every x in the domain, $-f(x)=f(-x)$. Odd functions are symmetric about the origin. For each point (x, y) on the graph, the point $(-x,-y)$ is also on the graph.

Objective 6: Determining Information about a Function from a Graph

