Section 3.4 Transformations of Functions

Objective 1: Using Vertical Shifts to Graph Functions

Let c be a positive real number.

1. The graph of $y=f(x)+c$ is obtained by shifting the graph of $y=f(x)$ vertically upward c units.
2. The graph of $y=f(x)-c$ is obtained by shifting the graph of $y=f(x)$ vertically downward c units.

Objective 2: Using Horizontal Shifts to Graph Functions

Let c be a positive real number.

1. The graph of $y=f(x+c)$ is obtained by shifting the graph of $y=f(x)$ horizontally to the left c units.
2. The graph of $y=f(x-c)$ is obtained by shifting the graph of $y=f(x)$ horizontally to the right c units.

For $c>0$, the graph of $y=f(x-c)$ is the graph of f shifted to the right c units. At first glance, it appears that the rule for horizontal shifts is the opposite of what seems natural. Substituting $x+c$ for x causes the graph of $y=f(x)$ to be shifted to the left while substituting $x-c$ for x causes the graph to shift to the right c units.

Objective 3: Using Reflections to Graph Functions

The graph of $y=-f(x)$ is a reflection of the graph of $y=f(x)$ about the \boldsymbol{x}-axis.
The graph of $y=f(-x)$ is a reflection of the graph of $y=f(x)$ about the \boldsymbol{y}-axis.

Objective 4: Using Vertical Stretches and Compressions to Graph Functions

Suppose a is a positive real number. The graph of $y=a f(x)$ is obtained by the multiplying each y coordinate of $y=f(x)$ by a.

1. If $a>1$, the graph of $y=a f(x)$ is a vertical stretch of the graph of $y=f(x)$.
2. If $0<a<1$, the graph of $y=a f(x)$ is a vertical compression of the graph of $y=f(x)$.

Objective 6: Using Combinations of Transformations to Graph Functions

When graphing a function that involves multiple transformations, it is important to follow a certain "order of operations." In our text, transformations are performed in the following order:

1. Horizontal shifts
2. Reflection about y-axis
3. Vertical stretches/compressions
4. Reflection about x-axis
5. Vertical shifts

Although different ordering is possible, the order above will always work.

