Section 3.6 One-to-one Functions; Inverse Functions

Objective 1: Understanding the Definition of a One-to-one Function

Definition: A function f is one-to-one if for any values $a \neq b$ in the domain of $f, f(a) \neq f(b)$.

Interpretation: For $f(x)=y$ to be a function, we know that for each x in the domain there exists one and only one y in the range. For $f(x)=y$ to be a one-to-one function, both of the following must be true: for each x in the domain there exists one and only one y in the range, AND for each y in the range there exists one and only one x in the domain.

Objective 2: Determining if a Function is One-to-one Using the Horizontal Line Test

The Horizontal Line Test
If every horizontal line intersects the graph of a function f at most once, then f is one-to-one.

Objective 3: Understanding and Verifying Inverse Functions

Every one-to-one function has an inverse function.

Definition: Let f be a one-to-one function with domain A and range B. Then f^{-1} is the inverse function of \boldsymbol{f} with domain B and range A. Furthermore, if $f(a)=b$ then $f^{-1}(b)=a$.

Range of f^{-1}
Domain of f^{-1}

Inverse functions "undo" each other.

Composition Cancellation Equations:

$f\left(f^{-1}(x)\right)=x$ for all x in the domain of f^{-1}
$f^{-1}(f(x))=x$ for all x in the domain of f

Objective 4: Sketching the Graphs of Inverse Functions

The graph of f^{-1} is a reflection of the graph of f about the line $y=x$.
If the functions have any points in common, they must lie along the line $y=x$.

Objective 5: Finding the Inverse of a One-to-one Function

We know that if a point (x, y) is on the graph of a one-to-one function, then the point (y, x) is on the graph of its inverse function.

To find the inverse of a one-to-one function, replace $f(x)$ with y, interchange the variables x and y, and then solve for y. This is the function $f^{-1}(x)$.

Inverse Function Summary

1. The inverse function f^{-1} exists if and only if the function f is one-to-one.
2. The domain of f is the same as the range of f^{-1} and the range of f is the same as the domain of f^{-1}.
3. To verify that two one-to-one functions f and g are inverses of each other, use the composition cancellation equations to show that $f(g(x))=g(f(x))=x$.
4. The graph of f^{-1} is a reflection of the graph of f about the line $y=x$. That is, for any point (a, b) that lies on the graph of f, the point (b, a) must lie on the graph of f^{-1}.
5. To find the inverse of a one-to-one function, replace $f(x)$ with y, interchange the variables x and y, and then solve for y. This is the function $f^{-1}(x)$.
