Section 4.1 Quadratic Functions

Objective 1: Understanding the Definition of a Quadratic Function and its Graph

Definition: A quadratic function is a function of the form $f(x) = ax^2 + bx + c$ where *a*, *b*, and *c* are real numbers with $a \neq 0$. Every quadratic function has a "u-shaped" graph called a *parabola*.

The five basic characteristics of a parabola are its

- 1. vertex
- 2. axis of symmetry
- 3. *y*-intercept
- 4. x-intercept(s) or real zeros, and
- 5. domain and range.

Objective 2: Graphing Quadratic Functions Written in Vertex Form

Vertex Form of a Quadratic Function

A quadratic function is in **vertex form** if it is written as $f(x) = a(x-h)^2 + k$.

The graph is a parabola with vertex (h, k).

The parabola "opens up" if a > 0, and the parabola "opens down" if a < 0.

The domain of the function is $(-\infty,\infty)$.

The line x = h is the axis of symmetry.

The range is $[k,\infty)$ if a > 0, and the range is $(-\infty,k]$ if a < 0.

Objective 4: Graphing Quadratic Functions Using the Vertex Formula

Formula for the Vertex of a Parabola

Given a quadratic function of the form $f(x) = ax^2 + bx + c$, $a \neq 0$, the vertex of the parabola is

$$\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right).$$

Objective 5: Determining the Equation of a Quadratic Function Given its Graph