Section 4.1 Quadratic Functions

Objective 1: Understanding the Definition of a Quadratic Function and its Graph

Definition: A quadratic function is a function of the form $f(x)=a x^{2}+b x+c$ where a, b, and c are real numbers with $a \neq 0$. Every quadratic function has a "u-shaped" graph called a parabola.

The five basic characteristics of a parabola are its

1. vertex
2. axis of symmetry
3. y-intercept
4. x-intercept(s) or real zeros, and
5. domain and range.

Objective 2: Graphing Quadratic Functions Written in Vertex Form

Vertex Form of a Quadratic Function

A quadratic function is in vertex form if it is written as $f(x)=a(x-h)^{2}+k$.
The graph is a parabola with vertex (h, k).
The parabola "opens up" if a >0, and the parabola "opens down" if a <0.
The domain of the function is $(-\infty, \infty)$.
The line $x=h$ is the axis of symmetry.
The range is $[k, \infty)$ if a >0, and the range is $(-\infty, k]$ if $\mathrm{a}<0$.

Objective 4: Graphing Quadratic Functions Using the Vertex Formula Formula for the Vertex of a Parabola
Given a quadratic function of the form $f(x)=a x^{2}+b x+c, a \neq 0$, the vertex of the parabola is $\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$.

Objective 5: Determining the Equation of a Quadratic Function Given its Graph

