Section 5.1a Exponential Functions

Objective 1: Understanding the Characteristics of Exponential Functions

Definition: An exponential function is a function of the form $f(x)=b^{x}$ where x is any real number and $b>0$ such that $b \neq 1$. The constant, b, is called the base of the exponential function.

Characteristics of Exponential Functions

For $b>0, b \neq 1$, the exponential function with base b is defined by $f(x)=b^{x}$.
The domain of $f(x)=b^{x}$ is $(-\infty, \infty)$ and the range is $(0, \infty)$. The graph of $f(x)=b^{x}$ has one of the following two shapes depending on the value of b :

$$
f(x)=b^{x}, b>1
$$

$$
f(x)=b^{x}, 0<b<1
$$

The graph of $f(x)=b^{x}, b>0, b \neq 1$, has the following properties:

1. The graph intersects the y-axis at $(0,1)$.
2. The graph contains the points $\left(-1, \frac{1}{b}\right)$ and $(1, b)$.
3. If $b>1$, then $b^{x} \rightarrow \infty$ as $x \rightarrow \infty$ and $b^{x} \rightarrow 0$ as $x \rightarrow-\infty$.

If $0<b<1$, then $b^{x} \rightarrow 0$ as $x \rightarrow \infty$ and $b^{x} \rightarrow \infty$ as $x \rightarrow-\infty$.
4. The line $y=0$ is a horizontal asymptote.
5. The function is one-to-one.

The number e is an irrational number that is defined as the value of the expression $\left(1+\frac{1}{n}\right)^{n}$ as n approaches infinity. The table below on the left shows the values of the expression $\left(1+\frac{1}{n}\right)^{n}$ for increasingly large values of n. As the values of n get large, the value e (rounded to 6 decimal places) is 2.718281 .

The function $f(x)=e^{x}$ is called the natural exponential function. The graph below on the right shows that the graph of $f(x)=e^{x}$ lies between the graphs of $f(x)=2^{x}$ and $f(x)=3^{x}$ when graphed on the same coordinate system.

\boldsymbol{n}	$\left(1+\frac{1}{n}\right)^{n}$
1	2
2	2.25
10	2.5937424601
100	2.7048138294
1000	2.7169239322
10,000	2.7181459268
100,000	2.7182682372
$1,000,000$	2.7182804693
$10,000,000$	2.7182816925
$100,000,000$	2.7182818149

Characteristics of the Natural Exponential Function

The Natural Exponential Function is the exponential function with base e and is defined as $f(x)=e^{x}$. The domain of $f(x)=e^{x}$ is $(-\infty, \infty)$ and the range is $(0, \infty)$.

The graph of $f(x)=e^{x}$ intersects the y-axis at $(0,1)$.
The graph contains the points $\left(-1, \frac{1}{e}\right)$ and $(1, e)$.
$e^{x} \rightarrow \infty$ as $x \rightarrow \infty$ and $e^{x} \rightarrow 0$ as $x \rightarrow-\infty$.
The line $y=0$ is a horizontal asymptote.
The function $f(x)=e^{x}$ is one-to-one.

Objective 2: Sketching the Graphs of Exponential Functions Using Transformations

The graph of $f(x)=3^{x}-1$ can be obtained by vertically shifting the graph of $f(x)=3^{x}$ down one unit. The function $f(x)=3^{x}$ is graphed below on the left. It contains the points $\left(-1, \frac{1}{3}\right),(0,1)$ and $(1,3)$ and has horizontal asymptote $y=0$. To shift the graph of this function down one unit, subtract 1 from each of the y-coordinates of the points on the graph. The resulting graph of $f(x)=3^{x}-1$, shown below on the right, contains the points $\left(-1,-\frac{2}{3}\right),(0,0)$ and $(1,2)$ and has horizontal asymptote $y=-1$.

Objective 3: Solving Exponential Equations by Relating the Bases

The function $f(x)=b^{x}$ is one-to-one because the graph of f passes the horizontal line test. Therefore, if the bases of an exponential equation of the form $b^{u}=b^{v}$ are the same, then the exponents must also be the same.

To solve an exponential equation using the Method of Relating the Bases, first rewrite the equation in the form $b^{u}=b^{v}$. Then $u=v$.

Note that not all exponential equations can be written in the form $b^{u}=b^{v}$. Other methods for solving exponential equations will be discussed in Section 5.4.

