Section 5.1a Exponential Functions

Objective 1: Understanding the Characteristics of Exponential Functions

Definition: An **exponential function** is a function of the form $f(x) = b^x$ where x is any real number and b > 0 such that $b \neq 1$. The constant, b, is called the base of the exponential function.

Characteristics of Exponential Functions

For b > 0, $b \ne 1$, the exponential function with base b is defined by $f(x) = b^x$. The domain of $f(x) = b^x$ is $(-\infty, \infty)$ and the range is $(0, \infty)$. The graph of $f(x) = b^x$ has one of the following two shapes depending on the value of b:

The graph of $f(x) = b^x$, b > 0, $b \ne 1$, has the following properties:

- 1. The graph intersects the y-axis at (0,1).
- 2. The graph contains the points $\left(-1,\frac{1}{b}\right)$ and (1,b).
- 3. If b > 1, then $b^x \to \infty$ as $x \to \infty$ and $b^x \to 0$ as $x \to -\infty$. If 0 < b < 1, then $b^x \to 0$ as $x \to \infty$ and $b^x \to \infty$ as $x \to -\infty$.
- 4. The line y = 0 is a horizontal asymptote.
- 5. The function is one-to-one.

The number *e* is an irrational number that is defined as the value of the expression $(1+\frac{1}{n})^n$ as *n* approaches infinity. The table below on the left shows the values of the expression $(1+\frac{1}{n})^n$ for increasingly large values of *n*. As the values of *n* get large, the value *e* (rounded to 6 decimal places) is 2.718281.

The function $f(x) = e^x$ is called the **natural exponential function.** The graph below on the right shows that the graph of $f(x) = e^x$ lies between the graphs of $f(x) = 2^x$ and $f(x) = 3^x$ when graphed on the same coordinate system.

Characteristics of the Natural Exponential Function

The Natural Exponential Function is the exponential function with base e and is defined as $f(x) = e^x$. The domain of $f(x) = e^x$ is $(-\infty, \infty)$ and the range is $(0, \infty)$.

The graph of $f(x) = e^x$ intersects the y-axis at (0,1).

The graph contains the points $\left(-1, \frac{1}{e}\right)$ and (1, e). $e^x \to \infty$ as $x \to \infty$ and $e^x \to 0$ as $x \to -\infty$. The line y = 0 is a horizontal asymptote. The function $f(x) = e^x$ is one-to-one.

Objective 2: Sketching the Graphs of Exponential Functions Using Transformations

The graph of $f(x) = 3^x - 1$ can be obtained by vertically shifting the graph of $f(x) = 3^x$ down one unit. The function $f(x) = 3^x$ is graphed below on the left. It contains the points $\left(-1, \frac{1}{3}\right)$, (0,1) and (1,3) and has horizontal asymptote y = 0. To shift the graph of this function down one unit, subtract 1 from each of the *y*-coordinates of the points on the graph. The resulting graph of $f(x) = 3^x - 1$, shown below on the right, contains the points $\left(-1, -\frac{2}{3}\right)$, (0,0) and (1,2) and has horizontal asymptote y = -1.

Objective 3: Solving Exponential Equations by Relating the Bases

The function $f(x) = b^x$ is one-to-one because the graph of f passes the horizontal line test. Therefore, if the bases of an exponential equation of the form $b^u = b^v$ are the same, then the exponents must also be the same.

To solve an exponential equation using the **Method of Relating the Bases**, first rewrite the equation in the form $b^u = b^v$. Then u = v.

Note that not all exponential equations can be written in the form $b^{u} = b^{v}$. Other methods for solving exponential equations will be discussed in Section 5.4.