Section 5.1b Exponential Functions

Objective 4: Solving Applications of Exponential Functions

The Periodic Compound Interest Formula is $A=P\left(1+\frac{r}{n}\right)^{n t}$, where A is the total amount in the account after t years, P is the principal (original investment amount), r is the annual interest rate as a decimal, and n is the number of times interest is compounded per year.

The Continuous Compound Interest Formula is $A=P e^{r t}$, where A is the total amount in the account after t years, P is the principal (original investment amount), and r is the annual interest rate as a decimal.

Exponential Growth

A model that describes the population, P, after a certain time, t, is $P(t)=P_{0} e^{k t}$ where $P_{0}=P(0)$ is the initial population and $k>0$ is a constant called the relative growth rate. (Note: k may be given as a percent.)

