Section 5.2 Logarithmic Functions

Objective 1: Understanding the Definition of a Logarithmic Function

Every exponential function of the form $f(x) = b^x$, where b > 0 and $b \ne 1$, is one-to-one and thus has an inverse function. The graph of $f(x) = b^x$, b > 1 and its inverse, f^{-1} , are shown below. Recall from Section 5.1, the graph of $f(x) = b^x$, b > 1 contains the points $\left(-1, \frac{1}{b}\right)$, (0,1) and (1,b), and since $b^x \rightarrow 0$ as $x \rightarrow -\infty$, the x-axis is a horizontal asymptote for the graph. Recall from Section 3.6 that the graph of f^{-1} is obtained by reflecting the graph of f about the line y = x. Therefore, the graph of f^{-1} will contain the points $\left(\frac{1}{b}, -1\right)$, (1,0) and (b,1), and the y-axis will be a vertical asymptote for the graph.

To find the equation of f^{-1} , we begin with the process from Section 3.6:

Step 1: Change f(x) to y: $y = b^x$ Step 2: Interchange x and y: $x = b^y$ Step 3: Solve for y:??

Before we can solve for y, we must introduce the following definition:

Definition: For x > 0, b > 0 and $b \ne 1$, the **logarithmic function with base** b is defined by $y = \log_b x$ if and only if $x = b^y$.

Step 3. Solve for y: $x = b^y$ can be written as $y = \log_b x$

Step 4. Change y to $f^{-1}(x)$: $f^{-1}(x) = \log_h x$

Objective 2: Evaluating Logarithmic Expressions

The expression $\log_b x$ is the exponent to which *b* must be raised to in order to get *x*.

Objective 3: Understanding the Properties of Logarithms

General Properties of Logarithms

For b > 0 and $b \neq 1$, (1) $\log_b b = 1$ and (2) $\log_b 1 = 0$.

Cancellation Properties of Exponentials and Logarithms

For b > 0 and $b \neq 1$,

- (1) $b^{\log_b x} = x$ and
- (2) $\log_b b^x = x$.

Objective 4: Using the Common and Natural Logarithms

Definition: For x > 0, the common logarithmic function is defined by $y = \log x$ if and only if $x = 10^{y}$.

Definition: For x > 0, the natural logarithmic function is defined by $y = \ln x$ if and only if $x = e^{y}$.

Objective 5: Understanding the Characteristics of Logarithmic Functions

Characteristics of Logarithmic Functions

For b > 0 and $b \ne 1$, the logarithmic function with base *b* is defined by $y = \log_b x$. The domain of $f(x) = \log_b x$ is $(0, \infty)$ and the range is $(-\infty, \infty)$. The graph of $f(x) = \log_b x$ has one of the following two shapes depending on the value of *b*:

The graph of $y = \log_b x$, b > 0 and $b \neq 1$ has the following properties:

- 1. The graph intersects the x-axis at (1,0).
- 2. The graph contains the points (*b*, 1) and $\left(\frac{1}{b}, -1\right)$.
- 3. If b > 1, the graph is increasing on the interval $(0, \infty)$. If 0 < b < 1, the graph is decreasing on the interval $(0, \infty)$.
- 4. The y-axis (x = 0) is a vertical asymptote.
- 5. The function is one-to-one.

Objective 6: Sketching the Graphs of Logarithmic Functions Using Transformations

Objective 7: Finding the Domain of Logarithmic Functions

If $f(x) = \log_b [g(x)]$, then the domain of f can be found by solving the inequality g(x) > 0.