Section 5.3 Properties of Logarithms

Objective 1: Using the Product Rule, Quotient Rule and Power Rule for Logarithms

Let $b>0, b \neq 1, u$ and v represent positive numbers, and r be any real number.

1. The Product Rule for Logarithms is $\log _{b}(u v)=\log _{b} u+\log _{b} v$.
2. The Quotient Rule for Logarithms is $\log _{b} \frac{u}{v}=\log _{b} u-\log _{b} v$.
3. The Power Rule for Logarithms is $\log _{b} u^{r}=r \log _{b} u$.
$\log _{b}(u+v)$ is NOT equivalent to $\log _{b} u+\log _{b} v$
$\log _{b}(u-v)$ is NOT equivalent to $\log _{b} u-\log _{b} v$
$\frac{\log _{b} u}{\log _{b} v}$ is NOT equivalent to $\log _{b} u-\log _{b} v$
$\left(\log _{b} u\right)^{r}$ is NOT equivalent to $r \log _{b} u$

Objective 2: Expanding and Condensing Logarithmic Expressions

Objective 3: Solving Logarithmic Equations Using the Logarithm Property of Equality The Logarithm Property of Equality: If a logarithmic equation can be written in the form $\log _{b} u=\log _{b} v$, then $u=v$. Furthermore, if $u=v$, then $\log _{b} u=\log _{b} v$.

Objective 4: Using the Change of Base Formula

Change of Base Formula: For any positive base $b \neq 1$ and for any positive real number u, then $\log _{b} u=\frac{\log _{a} u}{\log _{a} b}$ where a is any positive number such that $a \neq 1$.

