Section 5.3 Properties of Logarithms

Objective 1: Using the Product Rule, Quotient Rule and Power Rule for Logarithms

Let b > 0, $b \neq 1$, u and v represent positive numbers, and r be any real number.

- 1. The Product Rule for Logarithms is $\log_b(uv) = \log_b u + \log_b v$.
- 2. The Quotient Rule for Logarithms is $\log_b \frac{u}{v} = \log_b u \log_b v$.
- 3. The Power Rule for Logarithms is $\log_b u^r = r \log_b u$.

 $\log_{b} (u+v) \text{ is NOT equivalent to } \log_{b} u + \log_{b} v$ $\log_{b} (u-v) \text{ is NOT equivalent to } \log_{b} u - \log_{b} v$ $\frac{\log_{b} u}{\log_{b} v} \text{ is NOT equivalent to } \log_{b} u - \log_{b} v$ $(\log_{b} u)^{r} \text{ is NOT equivalent to } r \log_{b} u$

Objective 2: Expanding and Condensing Logarithmic Expressions

Objective 3: Solving Logarithmic Equations Using the Logarithm Property of Equality

The Logarithm Property of Equality: If a logarithmic equation can be written in the form $\log_b u = \log_b v$, then u = v. Furthermore, if u = v, then $\log_b u = \log_b v$.

Objective 4: Using the Change of Base Formula

Change of Base Formula: For any positive base $b \neq 1$ and for any positive real number u, then $\log_b u = \frac{\log_a u}{\log_a b}$ where a is any positive number such that $a \neq 1$.