Section 5.5 Applications of Exponential and Logarithmic Functions

Objective 1: Solving Compound Interest Applications

The Periodic Compound Interest Formula is $A=P\left(1+\frac{r}{n}\right)^{n t}$, where A is the total amount in the account after t years, P is the principal (original investment amount), r is the annual interest rate as a decimal, and n is the number of times interest is compounded per year.

The Continuous Compound Interest Formula is $A=P e^{r t}$, where A is the total amount in the account after t years, P is the principal (original investment amount), and r is the annual interest rate as a decimal.

Objective 2: Exponential Growth and Decay Applications

Exponential Growth

A model that describes the population, P, after a certain time, t, is $P(t)=P_{0} e^{k t}$ where $P_{0}=P(0)$ is the initial population and $k>0$ is a constant called the relative growth rate. (Note: k may be given as a percent.)

Exponential Decay

A model that describes the exponential decay of a population, quantity or amount A, after a certain time, t, is $A(t)=A_{0} e^{k t}$ where $A_{0}=A(0)$ is the initial quantity and $k<0$ is a constant called the relative decay constant. (Note: k is sometimes given as a percent.)

Half-Life: Every radioactive element has a half-life, which is the required time for a given quantity of that element to decay to half of its original mass.

