6.2 Applications of Radian Measure

OBJECTIVE 1: Determining the Area of a Sector of a Circle
For a circle of radius r, and central angle of θ radians, the area, A, of a sector of a circle is given by $A=\frac{1}{2} \theta r^{2}$.

The formula for the area of a sector of a circle, $A=\frac{1}{2} \theta r^{2}$ is only valid if the angle θ is in radians. An angle given in degrees must first be converted to radians.

OBJECTIVE 2: Computing the Arc Length of a Sector of a Circle

The arc length of a sector of a circle depends on the corresponding central angle that intercepts the arc and the length of the radius of the circle.

For a circle of radius r, the length, s, of the arc intercepted by a central angle of θ radians is given by $s=r \theta$.

The arc length formula $s=r \theta$ is only valid if the angle θ is in radians. An angle given in degrees must first be converted to radians.

