7.2a More on Graphs of Sine and Cosine: Phase Shift

OBJECTIVE 1: Sketching Graphs of the Form $y=\sin (x-C)$ and $y=\cos (x-C)$

The graph of $y=\sin (x-C)$ is a horizontal shift of the graph of $y=\sin x$, and the graph of $y=\cos (x-C)$ is a horizontal shift of the graph of $y=\cos x$.

If $C>0$, the shift is C units to the right, but if $C<0$, the shift is C units to the left.

Consider the function $y=\cos (x-\pi)$. Since $C=\pi$ and $\pi>0$, the graph is shifted to the right π units. The quarter points for $y=\cos (x-\pi)$ are obtained by adding π to the x-coordinate of each quarter point of $y=\cos x$. The graph of $y=\cos x$ is shown below on the left, and the graph of $y=\cos (x-\pi)$ is shown below on the right.

Now, consider the function $y=\sin \left(x+\frac{\pi}{2}\right)$. Since $C=-\frac{\pi}{2}$ and $-\frac{\pi}{2}<0$, the graph is shifted to the left $\frac{\pi}{2}$ units. The quarter points for $y=\sin \left(x+\frac{\pi}{2}\right)$ are obtained by subtracting $\frac{\pi}{2}$ from the x coordinate of each quarter point of $y=\sin x$. The graph of $y=\sin x$ is shown below on the left, and the graph of $y=\sin \left(x+\frac{\pi}{2}\right)$ is shown below on the right.

OBJECTIVE 2: Sketching Graphs of the Form $y=A \sin (B x-C)$ and $y=A \cos (B x-C)$

Horizontal stretching and horizontal shifting of sine or cosine functions together determine the phase shift of the function. The formula for phase shift is $\frac{C}{B}, B>0$, and this value will be the x coordinate of the first quarter point of the graph of the function $y=A \sin (B x-C), B>0$ or $y=A \cos (B x-C), B>0$.

Steps for Sketching Functions of the Form $y=A \sin (B x-C)$ and $y=A \cos (B x-C)$

1. Rewrite the function as $y=A \sin \left(B\left(x-\frac{C}{B}\right)\right)$ or $y=A \cos \left(B\left(x-\frac{C}{B}\right)\right)$. If $B<0$, then use the even and odd properties of the sine and cosine function to write the function in an equivalent form such that $B>0$.

We now use this new form to determine the amplitude, period, and phase shift.
2. The amplitude is $|A|$. The range is $[-|A|,|A|]$.
3. The period is $P=\frac{2 \pi}{B}$.
4. The phase shift is $\frac{C}{B}$.
5. The x-coordinate of the first quarter point is $\frac{C}{B}$. The x-coordinate of the last quarter point is $\frac{C}{B}+P$. An interval for one complete cycle is $\left[\frac{C}{B}, \frac{C}{B}+P\right]$. Subdivide this interval into 4 equal subintervals of length $P \div 4$ by starting with $\frac{C}{B}$ and adding $(P \div 4)$ to the x coordinate of each successive quarter point.
6. Multiply the y-coordinates of the quarter points of $y=\sin x$ or $y=\cos x$ by A to determine the y-coordinates of the corresponding quarter points for $y=A \sin (B x-C)=A \sin \left(B\left(x-\frac{C}{B}\right)\right)$ and $y=A \cos (B x-C)=A \cos \left(B\left(x-\frac{C}{B}\right)\right)$.
7. Connect the quarter points to obtain one complete cycle.

