7.2a More on Graphs of Sine and Cosine: Phase Shift

OBJECTIVE 1: Sketching Graphs of the Form $y = \sin(x - C)$ and $y = \cos(x - C)$

The graph of $y = \sin(x - C)$ is a horizontal shift of the graph of $y = \sin x$, and the graph of $y = \cos(x - C)$ is a horizontal shift of the graph of $y = \cos x$.

If C > 0 , the shift is ${\bf C}$ units to the right, but if C < 0 , the shift is ${\bf C}$ units to the left.

Consider the function $y = \cos(x - \pi)$. Since $C = \pi$ and $\pi > 0$, the graph is shifted to the right π units. The quarter points for $y = \cos(x - \pi)$ are obtained by adding π to the x-coordinate of each quarter point of $y = \cos x$. The graph of $y = \cos x$ is shown below on the left, and the graph of $y = \cos(x - \pi)$ is shown below on the right.

Now, consider the function $y=\sin\left(x+\frac{\pi}{2}\right)$. Since $C=-\frac{\pi}{2}$ and $-\frac{\pi}{2}<0$, the graph is shifted to the left $\frac{\pi}{2}$ units. The quarter points for $y=\sin\left(x+\frac{\pi}{2}\right)$ are obtained by subtracting $\frac{\pi}{2}$ from the x-coordinate of each quarter point of $y=\sin x$. The graph of $y=\sin x$ is shown below on the left, and the graph of $y=\sin\left(x+\frac{\pi}{2}\right)$ is shown below on the right.

OBJECTIVE 2: Sketching Graphs of the Form $y = A\sin(Bx - C)$ and $y = A\cos(Bx - C)$

Horizontal stretching and horizontal shifting of sine or cosine functions together determine the **phase shift** of the function. The formula for phase shift is $\frac{C}{B}$, B>0, and this value will be the *x*-coordinate of the first quarter point of the graph of the function $y=A\sin(Bx-C)$, B>0 or $y=A\cos(Bx-C)$, B>0.

Steps for Sketching Functions of the Form $y = A\sin(Bx - C)$ and $y = A\cos(Bx - C)$

1. Rewrite the function as $y = A \sin\left(B\left(x - \frac{C}{B}\right)\right)$ or $y = A \cos\left(B\left(x - \frac{C}{B}\right)\right)$. If B < 0, then use the even and odd properties of the sine and cosine function to write the function in an equivalent form such that B > 0.

We now use this new form to determine the amplitude, period, and phase shift.

- 2. The amplitude is |A|. The range is $\lceil -|A|, |A| \rceil$.
- 3. The period is $P = \frac{2\pi}{B}$.
- 4. The phase shift is $\frac{C}{B}$.
- 5. The x-coordinate of the first quarter point is $\frac{C}{B}$. The x-coordinate of the last quarter point is $\frac{C}{B}+P$. An interval for one complete cycle is $\left[\frac{C}{B},\frac{C}{B}+P\right]$. Subdivide this interval into 4 equal subintervals of length $P\div 4$ by starting with $\frac{C}{B}$ and adding $\left(P\div 4\right)$ to the x-coordinate of each successive quarter point.
- 6. Multiply the y-coordinates of the quarter points of $y = \sin x$ or $y = \cos x$ by A to determine the y-coordinates of the corresponding quarter points for $y = A\sin\left(Bx C\right) = A\sin\left(B(x \frac{C}{B})\right)$ and $y = A\cos\left(Bx C\right) = A\cos\left(B(x \frac{C}{B})\right)$.
- 7. Connect the quarter points to obtain one complete cycle.