7.2b More on Graphs of Sine and Cosine: Vertical Shift

OBJECTIVE 3: Sketching Graphs of the Form $y = A \sin(Bx - C) + D$ and $y = A \cos(Bx - C) + D$

The "+ D" added to the functions we have been graphing causes a **vertical shift** of the graph. If D>0, the shift is **D** units up, but if D<0, the shift is **D** units down.

Steps for Sketching Functions of the Form $y = A\sin(Bx - C) + D$ and $y = A\cos(Bx - C) + D$

1. Rewrite the function as
$$y = A \sin \left(B \left(x - \frac{C}{B} \right) \right) + D$$
 or $y = A \cos \left(B \left(x - \frac{C}{B} \right) \right) + D$. If $B < 0$, then use the even and odd properties of the sine and cosine function to write the function in an equivalent form such that $B > 0$.

We now use this new form to determine the amplitude, period, and phase shift.

- 2. The amplitude is |A|. The range is $\lceil -|A|+D, |A|+D \rceil$.
- 3. The period is $P = \frac{2\pi}{B}$.
- 4. The phase shift is $\frac{C}{B}$.
- 5. The *x*-coordinate of the first quarter point is $\frac{C}{B}$. The *x*-coordinate of the last quarter point is $\frac{C}{B}+P$. An interval for one complete cycle is $\left[\frac{C}{B},\frac{C}{B}+P\right]$. Subdivide this interval into 4 equal subintervals of length $P\div 4$ by starting with $\frac{C}{B}$ and adding $(P\div 4)$ to the *x*-coordinate of each successive quarter point.
- 6. Multiply the y-coordinates of the quarter points of $y = \sin x$ or $y = \cos x$ by A and then add D to determine the y-coordinates of the corresponding quarter points for $y = A\sin(Bx C) + D$ and $y = A\cos(Bx C) + D$.
- 7. Connect the quarter points to obtain one complete cycle.

OBJECTIVE 4: Determine the Equation of a Function of the Form $y = A \sin(Bx - C) + D$ or $y = A \cos(Bx - C) + D$ Given Its Graph