7.2b More on Graphs of Sine and Cosine: Vertical Shift

OBJECTIVE 3: Sketching Graphs of the Form $y=A \sin (B x-C)+D$ and $y=A \cos (B x-C)+D$

The "+ D " added to the functions we have been graphing causes a vertical shift of the graph. If $D>0$, the shift is \boldsymbol{D} units up, but if $D<0$, the shift is \boldsymbol{D} units down.

Steps for Sketching Functions of the Form $y=A \sin (B x-C)+D$ and $y=A \cos (B x-C)+D$

1. Rewrite the function as $y=A \sin \left(B\left(x-\frac{C}{B}\right)\right)+D$ or $y=A \cos \left(B\left(x-\frac{C}{B}\right)\right)+D$. If $B<0$, then use the even and odd properties of the sine and cosine function to write the function in an equivalent form such that $B>0$.

We now use this new form to determine the amplitude, period, and phase shift.
2. The amplitude is $|A|$. The range is $[-|A|+D,|A|+D]$.
3. The period is $P=\frac{2 \pi}{B}$.
4. The phase shift is $\frac{C}{B}$.
5. The x-coordinate of the first quarter point is $\frac{C}{B}$. The x-coordinate of the last quarter point is $\frac{C}{B}+P$. An interval for one complete cycle is $\left[\frac{C}{B}, \frac{C}{B}+P\right]$. Subdivide this interval into 4 equal subintervals of length $P \div 4$ by starting with $\frac{C}{B}$ and adding $(P \div 4)$ to the x coordinate of each successive quarter point.
6. Multiply the y-coordinates of the quarter points of $y=\sin x$ or $y=\cos x$ by A and then add D to determine the y-coordinates of the corresponding quarter points for $y=A \sin (B x-C)+D$ and $y=A \cos (B x-C)+D$.
7. Connect the quarter points to obtain one complete cycle.

OBJECTIVE 4: Determine the Equation of a Function of the Form $y=A \sin (B x-C)+D$ or $y=A \cos (B x-C)+D$ Given Its Graph

