9.4 Area of Triangles

OBJECTIVE 1: Determining the Area of Oblique Triangles

Area of a Triangle: In any triangle, the area is given by Area $=\frac{1}{2} b h$ where b is the length of the base of the triangle, and h, is the length of the altitude drawn to that base (or drawn to an extension of that base.)

Area of a Triangle: If A, B, and C are the measures of the angles of any triangle and if a, b, and c are the lengths of the sides opposite the corresponding angles, then the area of triangle $A B C$ is given by Area $=\frac{1}{2} b c \sin A$ or Area $=\frac{1}{2} a c \sin B$ or Area $=\frac{1}{2} a b \sin C$.

OBJECTIVE 2: Using Heron's Formula to Determine the Area of a SSS Triangle
Heron's Formula: Suppose that a triangle has side lengths of a, b, and c. The semiperimeter is $s=\frac{1}{2}(a+b+c)$, and the area of the triangle is Area $=\sqrt{s(s-a)(s-b)(s-c)}$.

