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Introduction

Introduction

Mercury is the closest planet to the Sun.

Its aphelion measures 69,816,900 km.

Its perihelion measures 46,001,200 km.

Mercury is the fastest planet in our solar system, at an average speed
of 48 km/s.

This great speed causes Mercury to have a very short year; only 87.9
Earth days.

A solar day on Mercury lasts 2 Mercurian years, or 176 Earth days,
and a sidereal day lasts 58.6 Earth days, or 2

3 of a Mercurian year.
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Introduction

Introduction

Mercury has a 3:2 spin:orbit resonance, and because its orbital speed
is much greater than its rotational speed, an interesting occurance
happens during sunrise and sunset on Mercury.

The purpose of this project is to explore, explain, and illustrate this
unique phenomenon.
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Kepler’s Laws

Kepler’s Laws

Kepler’s First Law states that planets travel along elliptical orbits with
the Sun as a focus.

Kepler’s Second Law states that a line joining a planet and the Sun
sweeps out equal areas in equal intervals of time, therefore a planet
travels fastest at perihelion and slowest at aphelion.

Kepler’s Third Law states that a planet’s sidereal period (or year) is
proportional to the square root of its semimajor axis cubed.

All three of these laws were considered throughout this project.
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Useful Formulas for Ellipses

Useful Formulas For Ellipses

We denote the semi-major axis of the ellipse as a, the semi-minor
axis, b, and the distance from the center of the ellipse to a focus, c .

An ellipse can be described by the equation

r1 + r2 = 2a

where r1 and r2 are the distances from both foci to a corresponding
point on the curve.
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Useful Formulas for Ellipses

Useful Formulas For Ellipses

r1 r2

F1 F2C

major axis

m
inor

axis

2a

2c

2b

This graphic was obtained from
http://mathworld.wolfram.com/Ellipse.html

Christina Crow, Emily Tarvin & Kevin Bowman () Sunrise on Mercury July 5, 2012 7 / 30



Useful Formulas for Ellipses

Useful Formulas For Ellipses

Another more familiar formula for an ellipse is

x2

a2
+

y2

b2
= 1

. Since we are at the origin, x0 and y0 are 0.

The ellipse can be expressed in polar coordinates x = a cos(φ) and
y = b sin(φ) for some parameter, φ.
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Useful Formulas for Ellipses

Useful Formulas For Ellipses

The eccentricity of an ellipse is the ratio c
a .

(Note: A circle has eccentricity 0, and a parabola has eccentricity 1.
Mercury’s orbit has the greatest eccentricity of all the planets in our
solar system. Its eccentricity is 0.205.)

The area of an ellipse can be expressed as A = πab.
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Derivation of Semi-Major Axis, Semi-Minor Axis, and Distance from
Center to Focus

Derivation of Semi-Major Axis, Semi-Minor Axis, and
Distance from Center to Focus

In order to find the values
of a, b, and c unique to
Mercury’s elliptical orbit,
we derived the equations
based on aphelion and
perihelion.

We observe that the
semi-major axis is
described by

a =
aphelion + perihelion

2

b r = a

ca
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Derivation of Semi-Major Axis, Semi-Minor Axis, and Distance from
Center to Focus

Derivation of Semi-Major Axis, Semi-Minor Axis, and
Distance from Center to Focus

It is also apparent that the
distance from the center to a
focus is described by

c = a− perihelion

b r = a

ca
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Derivation of Semi-Major Axis, Semi-Minor Axis, and Distance from
Center to Focus

Derivation of Semi-Major Axis, Semi-Minor Axis, and
Distance from Center to Focus

To find the length of the
semi-minor axis, we must
use the formula

r1 + r2 = 2a

and set r1 = r2.

Hence, r = a. Using the
Pythagorean Theorem, we
find that

b =
√

a2 − c2

.

b r = a

ca
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Derivation of Semi-Major Axis, Semi-Minor Axis, and Distance from
Center to Focus

Derivation of Semi-Major Axis, Semi-Minor Axis, and
Distance from Center to Focus

We are also able derive a, b, and c in terms of eccentricity.

Since eccentricity is defined as
c
a and c =

√
a2 − b2, we rewrite

eccentricity as

√
a2−b2
a and solve for b to obtain

b = a
√

1− eccentricity2
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Using Area to Obtain a Function of Time

Using Area to Obtain a Function of Time

Using Kepler’s Second Law, we derived an equation that represents
time in terms of area.

We can use area as a measure of time since they are directly
proportional.
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Using Area to Obtain a Function of Time

Using Area to Obtain a Function of Time

The function of position that gives time is demonstrated by the equation

A(φ) =
1

2
(cb sin(φ) + abφ)

Ha cosHΦL, Hb sinHΦLL
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Using Area to Obtain a Function of Time

Using Area to Obtain a Function of Time

To obtain the equation in terms of one Mercury year, we multiply

A(φ) by 1
abπ

.

The new equation is

A(φ) =
1

2abπ
(cb sin(φ) + abφ)
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Using Area to Obtain a Function of Time

Using Area to Obtain a Function of Time

Now that we have a function of the area that gives time, we needed to
invert this equation to obtain a function of time that gives position.

We let Mathematica compute this for us. We created an animation
that uses the inverted function to show Mercury orbiting the Sun and
demonstrates the increased speed of Mercury at perihelion as well as
the decreased speed at aphelion.
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Using Vectors to Track the Sun’s Position

Using Vectors to Track the Sun’s Position

The Sun is at (−c , 0) and Mercury’s position is at

(a cos(θ[t]), b sin(θ[t]))

Therefore, the vector from Mercury to the Sun can be denoted by

(−c − a cos(θ[t]),−b sin(θ[t]))

M2S

Ha cosHΘ@tDL,b sinHΘ@tDLL

H-c,0L
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Using Vectors to Track the Sun’s Position

Using Vectors to Track the Sun’s Position

Suppose γ is the angle of Mercury’s rotation.

Since Mercury orbits twice for every three rotations, the angle-to-area

ratio is
2π
2
3

= 3π.

This implies that in time t, Mercury will have rotated γ = 3πt + γ0
where γ0 is the initial angle.

Hence, the vector for Mercury’s horizon line is

(cos(3πt + γ0), sin(3πt + γ0))

.
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Using Vectors to Track the Sun’s Position

Using Vectors to Track the Sun’s Position

M2S

Horizon Line
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Using Vectors to Track the Sun’s Position

Using Vectors to Track the Sun’s Position

In order to find the angle between
the vector representing the horizon
line and the vector from Mercury
to the Sun, we used the definition
of the dot product and cross
product.

We normalized both of these
vectors so that their magnitude is
1.

cos(β) = MercurytoSun·HorizonLine
||MercurytoSun||||HorizonLine||

sin(β) = MercurytoSun×HorizonLine
||MercurytoSun||||HorizonLine||

Β Horizon Line

M2S
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The Unique Phenomenon

The Unique Phenomenon

The graph represented by the sine function is

0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0
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The Unique Phenomenon

The Unique Phenomenon

Zoomed in from 0.4 to 0.6:

0.45 0.50 0.55 0.60

-0.015

-0.010

-0.005

0.005

0.010

0.015
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The Unique Phenomenon

The Unique Phenomenon

The graph represented by the cosine function is

0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0
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The Unique Phenomenon

The Unique Phenomenon

As you can see from the sine and cosine graphs, there is a strange
occurrence at t = 0.5 and t = 1.5.

Both of the functions ”dip” at these values for t.

How does all of this apply to Mercury’s sunrise and sunset?
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The Unique Phenomenon
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The Unique Phenomenon

Miscellaneous

A change in the Sun’s size can be
easily detected on Mercury.

To understand the perspective of
the Sun from Mercury, we can find
the angle, α:

α = tan−1
RadiusoftheSun

DistancefromMercurytotheSun

Α

Sun's Radius

Dist. to Sun
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Conclusion

Conclusion

This unique phenomenon occurs because when Mercury is at
perihelion, its orbital speed is so much faster than its rotational
speed.

As a result, an observer on Mercury could witness a double sunrise
during a single perihelion passage, and a double sunset during the
next perihelion passage which would occur during the same solar day.
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