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Abstract. In the following paper, we will derive an equation of
a hyperbola which passes through a point that, when connected
to the foci of the hyperbola, creates a triangle such that measure
of one base angle is twice of the other. Consequently, all points
on this hyperbolic curve create triangles with this characteristic.
Applying this to a specific condition, it is possible to show that
with this hyperbola, a straight edge, and a compass, any angle can
be trisected.

1. History of the Problem of Trisection

The problem of trisecting an angle goes back to the time of the
Ancient Greeks. Plato was the first to think of constructions as a
process that must only be done with a straightedge, used to connect
two points, and a compass, used to create circles and arcs. Trisecting
the angle is one of three problems of Greek antiquity, the other two
being creating a square with identical area as a circle and constructing
a cube twice the volume of a given cube.

Ultimately, the Greeks strived to trisect angles of arbitrary measure.
They believed it was possible simply because some angles, such as 90
degrees, were shown to be easily trisected. Furthermore, processes had
been discovered to both bisect and trisect line segments, so could any
arbitrary angle be trisected? This fact encouraged mathematicians to
believe that a general angle trisection method with just a straight edge
and compass was within reach.

Hippocrates (460-380 BC), the first person to attempt the trisection
of an angle, was unsuccessful but contributed to the world of geometry
by labeling points and lines with letters. Hippias (460-399 BC) formed
the first successful trisection with a curve called quadratix (this was the
first curve introduced in geometry besides lines and circles). Menaech-
mus (380-320 BC) discovered conic sections. Archimedes (287-217 BC)
was able to produce an uncomplicated solution but it required the use
of a marked straightedge twice in order to complete the trisection.
Nicomedes (280-210 BC) also used a mark straightedge in one of his
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techniques, but succeeded in the trisection using a conchoid. Apolo-
nius (250-175 BC) discovered that by using conic sections, trisection
was possible. Both Pappus (early fourth century) and Descartes (1596-
1650) used Apolonius’ discovery to trisect an angle with a hyperbola
and parabola, respectively. However, the problem of trisecting an angle
with only an unmarked straightedge and compass remained.

Beginning in the sixteenth century, mathematicians utilized the con-
cepts of the Greek constructions used in trisection and doubling the
volume of the cube to solve cubic and quartic equations. Francios Vi-
ete (1540-1603) noticed a link between the equations and trigonometry
when working with irreducible polynomials, which were at the heart of
the proof of planar constructible impossibility. Pierre Wantzel (1814-
1848) proved the problem of trisection impossible with planar construc-
tions in his 1837 article titled Research on the Means of Knowing If a
Problem of Geometry Can Be Solved with Compass and Straight Edge.
Essentially, Wantzel’s proof was based on the fact that an angle trisec-
tion was equivalent to being able to construct roots of a cubic equation.
This provided a definitive answer to the problem posed 2200 years later.
The impossibility of the trisection using planar constructions then gave
birth to modern abstract algebra.

2. Basic Constructions

Constructions are divided planar and solid constructions. Planar
constructions are done with a compass and straight edge. Solid con-
structions add conic sections to the set of things solidly constructible
(i.e. hyperbolas). In this project, we will not explain how to perform
solid constructions. We will simply state, ”construct the hyperbola.”

2.1. Notation. Before we begin listing constructions needed in tri-
secting an angle, let us define some notation needed in the following
proofs of these constructions:

•
←→
XY denotes the line through points X and Y .
• XY denotes the segment from point X to point Y .
• C(X, Y ) denotes a circle with center X and radius XY .
• XY denotes the magnitude of segment XY
• ∠XY Z denotes the measure or name of an angle, depending on

the context.

Let us start with the following axioms of planar constructions:

(1) Given two points A and B, we can construct the line and the

segment that passes through points A and B (i.e.
←→
AB and AB

respectively),
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(2) Given two points A and B, we can construct the circle with
center A and radius AB. Denote the circle by C(A,B),

(3) Given a line through the points A and B and an angle θ, we
can construct angle θ such that one of its rays lies on the line
through points A and B.

Now we can proceed to proving propositions needed to produce the
trisection of an angle using a hyperbolic curve,

Proposition 2.1. (Rusty Compass Theorem) Given points A, B,
and C, we wish to construct a circle centered at point A with radius
equal to BC [8].

Proof. First, draw C(A,B) and C(B,A) and obtain point D which
forms equilateral 4ABD. Then, construct C(B,C). Extend DB past
point B and call DB ∩ C(B,C), point E. Construct C(D,E). Then
extend DA past point A and label DA∩C(D,E), point F . Construct
C(A,F ). Because E lies on C(B,C), BE = BC. Then, because
4ABD is equilateral, DA = DB. Also, because E and F lie on a
circle with center D, DE = DF . Therefore, AF = BE = BC [2]. �

Figure 1. Rusty Compass Theorem

Proposition 2.2. (Copying an Angle) Given ∠ABC and a line
l containing a point D, we can find E on l and a point F such that
∠ABC = ∠EDF [8].
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Proof. Using Proposition 2.1 we construct the point E on line l with
BA = DE. Construct a circle with center D with radius length BC.
Construct another circle with center E with radius length AC. We get
the point F . Therefore, 4ABC ∼= 4EDF by SSS. So, ∠ABC =
∠EDF . �

Figure 2. Copying an Angle

Proposition 2.3. (Bisecting an Angle) Given ∠ABC, there is a
point D such that ∠ABD ∼= ∠DBC [8].

Proof. Extend AB to get the line l. Construct C(B,C) to get the point
E on l. Construct C(E,B) and C(C,B) to get D. Then ∠ABD ∼=
∠DBC. Therefore, BD bisects ∠ABC. �
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Figure 3. Bisecting an Angle

Proposition 2.4. (Dropping a Perpendicular) Given a line l and
a point p not on l, we can construct a line l′ which is perpendicular to
l and passes through p [8].

Proof. There exists a point A on l. If
←→
pA ⊥ l, we are done. If not,

construct C(p,A) to get B. Next, construct C(A,B) and C(B,A) to

get C. Then
←→
pC is perpendicular to l. �

Figure 4. Dropping a Perpendicular

Proposition 2.5. (Parallel Postulate, Playfair) Given a line l
and P not on l, we can construct l′ through P and parallel to l [8].

Proof. Construct l′′ such that it is perpendicular to l and passes through
P by Proposition 4. Now construct l′ through P and perpendicular to
l′′ by Proposition 6. l′ is parallel to l through P . �
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Figure 5. Parallel Postulate, Playfair

Proposition 2.6. (Raising a Perpendicular) Given a point p on
a line l, then you can construct l′ through point p perpendicular to line
l [8].

Proof. There exists a point A on line l distinct from point p. Construct
C(p,A) to obtain l ∩C(p,A) = B. Construct C(A,B) and C(B,A) to

get C. Draw
←→
pC. This line is l′. �

Figure 6. Raising a Perpendicular
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3. The Hyperbola

3.1. Defintion. In general, conic sections are curves (except in the
cases of degenerate sections) that are obtained by intersecting a plane
with a cone. These sections include circles, ellipses, hyperbolas, and
parabolas [7].

Hyperbolas are typically defined in two ways:

• The locus of all points P in the plane the difference of whose
distances r1 = F1P and r2 = F2P from two fixed points, called
foci, is a constant k, with k = r2 − r1 (as seen in Figure 7) [4],
• The locus of all points for which the ratio of distances from

one focus to a line (directrix) is a constant e (eccentricity), with
e > 1 (as seen in Figure 8) [3].

Hyperbolas, specifically, are created by intersecting a plane with a
double cone (with apexes touching) generated by a line with an angle
θ from the x-axis. Slice this double cone with a constant plane parallel
to the axis of the double cone at an angle φ such that θ < φ < π

2
to

obtain a hyperbola [3]. These loci create two distinct branches of the
curve.

3.2. General Definition of Features. Hyperbolas have two axes:
the transverse axis and the conjugate axis. To locate the transverse
axis, the two vertices must be considered. The vertices can be described
as the points where the distance between the two branches is the least,
one vertex on each branch of the hyperbola. The transverse axis is
the line segment which connects the vertices. The conjugate axis is
perpendicular to the transverse axis and runs through the center of
the hyperbola which is located at the midpoint of the transverse axis
and the vertices (usually denoted by (h, k)). It is also important to note
that the center, (h, k), of a hyperbola is located at the intersection of
the asymptotes, conjugate axis, and transverse axis.

The hyperbola is an open curve, which means that it extends to
infinity. Zooming out on the curve, you will see the curve approaching
a pair of lines called the asymptotes.

The symmetry about its conjugate and transverse axis is an interest-
ing characteristic of the hyperbola.
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Figure 7. Standard Hyperbola Centered at (h, k) and
its Features

3.2.1. Equations of Features of a Hyperbola. Hyperbolas are algebraically
defined by an equation of the form

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

. with real coefficients and solutions in the form of ordered pairs, (x, y).
Also, hyperbolas are commonly expressed in standard form.

Two standard forms of hyperbolas are [6]:

• If the transverse axis is along the x - axis in the Cartesian plane
(as in Figure 7) and centered at (h, k), the equation can be
written as

(x− h)2

a2
− (y − k)2

b2
= 1.

• If the transverse axis is along the y - axis in the Cartesian plane
and centered at (h, k), the equation can be written as

(y − k)2

b2
− (x− h)2

a2
= 1.
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By observing the standard forms of a hyperbola, you can see that
the a2 term always corresponds to the x2 term and b2 always to the y2

term. Thus, we can determine a and b directly from the standard form
of the hyperbola. Also, c can be determined by the following equation
c =
√
a2 + b2.

The values a and c define where the foci and vertices lie on the
hyperbola’s horizontal axis. As seen in Figure 7, the foci lie at distances
a from the center, and the vertices lie at distances c from the center.
Hence, the coordinates of the vertices and foci are (a, 0), (−a, 0) and
(c, 0), (−c, 0) respectively.

As seen in Figure 7, the asymptotes of hyperbolas centered at (h, k)
with different transverse axes are given by the following equations.

• For hyperbolas with transverse axis along the x-axis,

y = ± b
a

(x− h) + k.

• For hyperbolas with transverse axis along the y-axis,

y = ±a
b

(x− h) + k.

The conjugate and transverse axes can also be expressed as functions
of a and b. The equations are 2b and 2a respectively.

The shape of the hyperbola is characterized by e (eccentricity), which
can be defined as the ratio of the distances from a focus to the corre-
sponding directrix (as seen in Figure 8). The eccentricity is given by

the equation e = c
a

and equations for the directrix are given by x = a2

c

and x = b2

c
.
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Figure 8. Hyperbola Showing Eccentricity Ratio

Now that we have defined and given equations for all features of a
hyperbola, we can begin to derive the specific hyperbola needed for the
purpose of this project.

3.3. Derivation of General Hyperbola. We will now show the deriva-
tion of the curve that consists of all the points C = (x, y), in 4ABC,
such that ∠CBA = 2∠CAB.

Figure 9. Triangle Used for Equation Derivation
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From Figure 9, we can see the following,

β = x+ w(3.1)

y = r sin θ(3.2)

x = r cos θ(3.3)

s =
r sin θ

sin 2θ
(3.4)

Using the Pythagorean Theorem to find side w,

y2 + w2 = s2

w2 = s2 − y2

Substituting y and s values from equations (3.2) and (3.4),

w2 =
(r sin θ

sin 2θ

)2
− (r sin θ)2

=
r2 sin 2θ

sin 22θ
− r2 sin 2θ

Taking the square root of both sides of our equation,

w =

√
r2 sin 2θ

sin 22θ
− r2 sin 2θ

=

√
r2 sin 2θ

( 1

sin 22θ
− 1
)

= r sin θ

√( 1

sin 22θ
− 1
)

= r sin θ
√

csc 22θ − 1

= r sin θ
√

cot 22θ

= r sin θ cot 2θ

= r sin θ
(cos 2θ

sin 2θ

)
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= r sin θ
( cos 2θ

2 sin θ cos θ

)
=

r cos 2θ

2 cos θ

=
r(cos 2θ − sin 2θ)

2 cos θ

=
r cos 2θ

2 cos θ
− r sin 2θ

2 cos θ

w =
r cos θ

2
− r sin 2θ

2 cos θ
(3.5)

Taking our expression in equation (3.3) and (3.5) into equation (3.1),

β = x+ w

= r cos θ +
r cos θ

2
− r sin2 θ

2 cos θ

Multiplying both sides of the equation by 2r cos θ,

2r2 cos2 θ + r2 cos2 θ − r2 sin2 = 2βr cos θ.

Using substitution with equations (3.2) and (3.3),

2x2 + x2 − y2 = 2βx.

Completing the square,

3x2 − 2βx− y2 = 0

x2 − 2

3
βx− 1

3
y2 = 0

(x− β

3
)2 − y2

3
=

β2

9

Putting the formula for this hyperbola in standard form, we arrive
at the curve,

(x− 1
3
β)2(

β
3

)2 − y2(
β√
3

)2 = 1.(3.6)

This equation satisfies the conditions needed for the problem’s pur-
pose. This hyperbola is missing a point because when the point C on
the 4ABC is collapsed towards AB, it will eventually become a point
on AB. Then, it can no longer satisfy the condition ∠CBA = 2∠CAB.
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3.4. Hyperbola with β = 1. For this project, our desired curve is
Γ. It is the locus of all points C = (x, y) such that, in 4ABC with
A = (0, 0) and B = (1, 0), ∠CBA = 2∠CAB (as seen in Figure 9). We
will obtain Γ by substituting β = 1 into equation (3.6). We arrive at
the equation,

(x− 1
3
)2(

1
3

)2 − y2(
1√
3

)2 = 1(3.7)

Figure 10. Depiction of Γ and its Features

3.4.1. Equations of Features of Γ. Equation (3.7) is in standard form
because it is of the form,

(x− h)2

a2
− (y − k)2

b2
= 1.

Most importantly, we see that Γ is centered at (1
3
, 0) instead of the

origin (as seen in Figure 10) . Because of this, we must shift the
vertices and foci right 1

3
units. Therefore, the vertices have coordinates

(−a+ 1
3
, 0) and (a+ 1

3
, 0). Shifting the equations of the foci in the same

fashion, we arrive at the coordinates (−c + 1
3
, 0) and (c + 1

3
, 0). We
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obtain vertices: (0, 0) and (2
3
, 0), and foci: (−1

3
, 0) and (1, 0). For the

problem of the trisection, we will only use the right branch of Γ along
with the right focus and vertex.

From the standard form of Γ, we observe that its center is located
at (1

3
, 0) with a = 1

3
and b = 1√

3
.

Using the relationship c =
√
a2 + b2 to find c, we obtain c = 2

3
. The

values of a and c are used in finding the eccentricity of the Γ,

e =
c

a
=

2
3
1
3

= 2.

It also has transverse axis along the x-axis in the Cartesian plane
with length 2

3
and conjugate axis parallel to the y-axis in the Cartesian

plane with length 2√
3
. Lastly, the asymptotes of Γ are denoted by

equations, y =
√

3(x − 1
3
) and y = −

√
3(x − 1

3
). Now that we have

quantified the features of Γ, we can proceed to our problem: trisecting
an arbitrary acute angle using Γ.

4. Trisecting the Angle

Our argument is based on an argument presented by Pappus in Sir
Thomas Heath’s A History of Greek Mathematics [1].

4.1. Construction of the Trisection. Given AB (with A = (0, 0)
and B = (1, 0) on the Cartesian plane) and an angle θ, we can construct
the trisection of an arbitrary angle using our derived hyperbola, Γ,
along with basic constructions outlined in Section 2 [1].
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Figure 11. Trisection Construction

(1) Construct the hyperbola Γ with right branch’s focus at point
B.

(2) Use Proposition 2.1 to construct point D at (1
2
, 0).

(3) Using Proposition 4, construct l perpendicular to AB at point
D.
• Note that l is the perpendicular bisector of AB.

(4) Bisect angle θ using Proposition 2.3 to obtain θ
2
.

(5) From the axioms of basic planar constructions, we are able to
construct ray l′ with right endpoint on l at an angle θ

2
from l

measured anti-clockwise.
• If l′ contains point A, continue from Step (7).
• If l′ does not contain A, continue from Step (6).

(6) Construct l′′ ‖ l′ through point A.
(7) Obtain point O such that ∠AOD = θ

2
.

(8) Construct AO.
(9) Using Proposition 2.2, reflect ∠AOD about line l such that it

creates ∠DOB.
(10) Construct OB.

• Note that AO = OB, therefore 4AOB is isosceles.
(11) Construct C(O,A).

• Note that C(O,A) contains both points A and B because
OA and OB are radii. Also, ∠AOB = θ.

(12) Obtain point P from the intersection of
_

AB and Γ.
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(13) Construct OP , AP , and PB.
• Note that4APB, obtained in previous step, is the triangle

such that 2∠PAB = ∠PBA.

4.2. Proof of Trisection. For the sake of the ease of the proof we
will rename the central angles α and ψ and note that α + ψ = θ. Let
∠PAB = φ, ∠PBA = 2φ, ∠AOP = α, and ∠POB = ψ.

Theorem 4.1. If ∠PBA = 2∠PAB, then ∠AOP = 2∠POB. Hence,
∠POB trisects ∠AOB.

Proof. We know that 1
2
ψ = φ and 2φ = 1

2
α [8]. Solving for φ in both

equations and equating them, we arrive at 1
2
ψ = 1

4
α. So, 2ψ = α or

ψ = 1
2
α. Notice that α+ψ = ∠AOB, so ∠AOB = 3ψ or ψ = 1

3
∠AOB.

Therefore, ψ trisects ∠AOB. �

Figure 12. Depiction of Trisection Proof

We have successfully constructed an angle given a line segment and
trisected it using Γ.

5. Geometric Interpretation of Features

We will look at how the asymptotes, right directrix, and right focus
of Γ are geometrically interpreted in the picture of the trisection done
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in Section 4.

First, we will show that the intersection of the asymptotes occurs at
1
3

the distance from point A on AB, giving it coordinates (1
3
, 0). This

is done by setting the equations found in Section 3.4.1 equal to each
other.

√
3
(
x− 1

3

)
= −

√
3
(
x− 1

3

)
√

3x−
√

3

3
= −

√
3x+

√
3

3

2
√

3x =
2
√

3

3

x =
1

3

Second, we will show that the directrix corresponding to the right
focus of Γ lies halfway between A and B (i.e. also note that the directrix
of Γ is perpendicular to AB). By using the equation for the directrix
to derive the coordinates,

x =
b2

c

x =
1
3
2
3

x =
1

2
.

Since the directrix of Γ divides AB into two equal parts and is per-
pendicular to AB, making it the perpendicular bisector of AB. Conse-
quently, it (also) bisects ∠KOP which is the middle angle of trisection
of ∠AOB as seen in Figure 13.

If you just look at the right branch of Γ (as used in the trisection),
the point B is the focus corresponding to the branch.
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Figure 13. Geometric Interpretations of Features of Γ
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