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Here are the propositions used in our final trisection
construction along with pictures demonstrating construction

procedures:

Rusty Compass Theorem

Copying an Angle

Bisecting an Angle

Parallel Postulate

Raising a Perpendicular
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Rusty Compass Theorem

Given points A, B, and C , we wish to construct a circle centered
at point A with radius equal to BC .
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Copying an Angle

Given ∠ABC and a line l containing a point D, we can find E on l
and a point F such that ∠ABC = ∠EDF .
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Bisecting an Angle

Given ∠ABC , there is a point D such that ∠ABD ∼= ∠DBC .
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Dropping a Perpendicular

Given a line l and a point p not on l , we can construct a line l ′

which is perpendicular to l and passes through p.
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Parallel Postulate (Playfair)

Given a line l and P not on l , we can construct l ′ through P and
parallel to l .
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Propositions and Pictures

Raising a Perpendicular

Given a point p on a line l , you can construct l ′ through point p
perpendicular to line l .
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General Definitions
Bridging the Gap from General Definition to Γ
The Curve Γ

Important Features of Hyperbolas

Important
Features are:

1 focus

2 directrix

3 vertex

4 asymptotes

5 transverse
axis

6 conjugate
axis
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Definition of Hyperbolas

The locus of all points P
in the plane the
difference of whose
distances r1 = F1P and
r2 = F2P from two fixed
points, called foci, is a
constant k , with
k = r2 − r1.
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Definition of Hyperbolas

The locus of all points
for which the ratio of
distances from one focus
to a line (the directrix) is
a constant e (the
eccentricity), with e > 1.

These loci create
two distinct
branches of the
curve.
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From Definitions to Derivation

So how do we tie all of this together?

Derive a curve that satisfies the specific conditions of the
problem.

Use this curve to trisect an arbitrary acute angle.

Interpret the features of the curve as it fits into the trisection
picture.
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The Curve Γ

Solving for w

Values from Derivation Triangle

β = x + w y = r sin θ x = r cos θ s = r sin θ
sin 2θ

w2 = s2 − y2

w2 =
r2 sin 2θ

sin 22θ
− r2 sin 2θ

w =

√
r2 sin2 θ

(
1

sin2 2θ
− 1

)
= r sin θ

√
csc 22θ − 1

= r sin θ
√

cot 22θ

= r sin θ

(
cos 2θ

2 sin θ cos θ

)

=
r(cos 2θ − sin 2θ)

2 cos θ

w =
r cos θ

2
− r sin 2θ

2 cos θ
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β = r cos θ +
r cos θ

2
− r sin2 θ

2 cos θ

2r2 cos2 θ + r2 cos2 θ − r2 sin2 θ = 2βr cos θ

(
x − β

3

)2
− y2

3
=
β2

9

(x − β
3 )2(

β
3

)2
− y2(

β√
3

)2
= 1
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Construction of the Trisection

Trisection Construction

Given AB (with A = (0, 0) and B = (1, 0) on the Cartesian plane)
and an angle θ, we can construct the trisection of an arbitrary
angle using our derived hyperbola, Γ, along with basic
constructions previously outlined.
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Step 1

Construct the hyperbola Γ with right branch’s focus at point B.
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Step 2

Using the Rusty Compass Theorem, construct point D at ( 1
2 , 0).
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Step 3

Construct line l perpendicular to AB at point D by dropping a
perpendicular. Note that line l is the perpendicular bisector of AB.
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Step 4

Bisect angle θ to obtain θ
2 .
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Step 5

From the axioms of basic planar constructions, we are able to
construct ray l ′ with right endpoint on l at an angle θ

2 from l
measured anti-clockwise.
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Step 6

If line l ′ does not contain point A, construct l ′′ ‖ l ′ through point
A.
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Step 7

If line l ′ does contain point A, obtain point O such that
∠AOD = θ

2 .
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Step 8

Construct AO.
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Step 9

Reflect ∠AOD about line l such that it creates ∠DOB by using
the construction to copy an angle.
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Step 10

Construct OB. Note that AO = OB, so 4AOB is isosceles.
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Step 11

Construct C (O,A). Note that C (O,A) contains both points A and
B because OA and OB are radii. Also, ∠AOB = θ.
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Step 12

Obtain point P from the intersection of
_
AB and Γ.
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Step 13

Construct OP, AP, and PB. Note that 4APB, obtained in
previous step, is the triangle such that 2∠PAB = ∠PBA.
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Theorem

If ∠PBA = 2∠PAB, then ∠AOP = 2∠POB. Hence, ∠POB
trisects ∠AOB.

Proof

We know that 1
2ψ = φ and

2φ = 1
2α. Solving for φ in

both equations and
equating them, we arrive at
1
2ψ = 1

4α. So, 2ψ = α or
ψ = 1

2α. Notice that
α + ψ = ∠AOB, so
∠AOB = 3ψ or
ψ = 1

3∠AOB. Therefore, ψ
trisects ∠AOB.
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Geometric Interpretations of Features of Γ
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Investigation of Further Curves

Can we modify this triangle to section angles into however many
parts we want just as we have trisected an angle using this triangle?
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Investigation of Further Curves

Yes, we can by using this triangle!
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