
DeepFE: Deep Learning for Frog Eggs
Quantification

BY: DeVision Team

Aquatic
Germplasm
& Genetic
Resource
Center
(AGGRC)

• The AGGRC's mission is to lead globally in
developing germplasm repositories and promoting
the commercialization of genetic resources for
aquatic species through collaborative efforts.

• Instead of being a centralized global repository, the
AGGRC focuses on empowering various
communities within aquatic species to establish
their own germplasm repositories by providing
necessary technologies, practices, and services.

Aquatic Germplasm
& Genetic Resource
Center (AGGRC)

• The main challenge
addressed is the lack of
standardization and
reproducibility in
cryopreservation for aquatic
species, which has hindered
research progress due to
inefficiency and failures.

• The statistics of the eggs to
be preserved is important
for record.

Team DeVision

• The DeVision team is a
homogenous blend of Professor
Wolenski and his staff of
undergraduates and graduate
student at different years.

Main Goal

OUR
MISSION

• Project Goal: The goal of the
project is to count frog eggs in a
Petri dish.

• AGGRC's Challenge: AGGRC
sought MC^2's help to address
their main challenge, which was
accurately counting frog eggs,
especially in a clustered
environment. Existing methods
were not performing well in such
cases.

• Task: We took on the task and developed a program to provide AGGRC with
a better and faster egg counting solution suitable for both clustered and
non-clustered eggs.

• Focus on non-clustered Eggs: Throughout the summer of 2023, the team
concentrated on building a machine-learning model specifically for non-
clustered eggs, aiming to surpass the accuracy and speed of AGGRC's
current tools.

• Stardist Machine Learning Package: The new model is based on the Stardist
machine learning package, which utilizes image segmentation and star-
convex polygons to count eggs by identifying cell nuclei.

• Dataset Preparation: To ensure good quality training data, the team
carefully preprocessed the dataset using the FIJI application and lab kit
plugins. Each egg was annotated to establish the total egg count.

• Impressive Training Results: During
the evaluation and training process,
the team conducted experiments
using a dataset of frog eggs. The
model achieved an impressive mean
accuracy of over 90 percent.

• Quality Assurance: The meticulous
dataset annotation and
preprocessing were done to
guarantee the model's training
data's reliability and accuracy.

Tackling the problem

Brainstorming

o What can help us solve the image detection
problem?

o Convolutional Neural Network used for
computer vision

o One can use the idea of Image
segmentation specifically, instance or
semantic segmentation to approach this
problem.

Image Segmentation
(Instance and
Semantic)

• IS - Identifying each object
and providing them with a
unique label

• SS - classifying each pixel
in an image into
predefined categories or
classes

Challenges in
Cell Image
Segmentation

• When dealing with objects too close to
each other.

• Misclassification of Pixels

• Merging surrounding cell
together

• Overlapping Boundaries

• Hard to distinguish individual
cells

• Small and Irregular Cells

• wrong localization of cell

• High Sensitivity to Initial
Segmentation

• Error in cell detection due to
intial segment

Stardist

• Uses star-convex polygons, well-suited
to approximate the round shapes of
cell nuclei in microscopy images.

• Utilizes a lightweight neural network
based on U-Net, making it easy to train
and use.

• Predicts flexible shape representations

Stardist architecture in
a Nutshell

• U-net Backbone- Dense
polygon prediction.

• Post processing-Polygon
selection

Different models for Cell Detection

U-Net (2 class):

• Predicts "cell" and
"background"
classes. (bottom up)

• Approx. 1.4 million
parameters.

• Uses thresholding on
the cell probability
map for the final
result.

U-Net (3 class):

• Similar to U-Net (2
class).(bottom up)

• Adds "cell boundary"
class to differentiate
crowded cells with
touching borders.

Mask R-CNN:

• State-of-the-art
instance
segmentation.

• Combines bounding-
box region proposals
and mask
segmentation (Top-
down approach).

• Approx. 45 million
parameters.

• Involves grid search
for hyper-
parameters.

StarDist:

• Uses 32 radial
directions with U-
Net backbone.

Performance
comparison
of the
models

• Outperforms other methods in predicting
more plausible cell shapes (e.g., no holes or
ridges).

• Competitive with state-of-the-art Mask R-CNN,
while having significantly fewer parameters
and being easier to train and use.

• Requires minimal hyper-parameter tuning for
good results.

More on stardist

• It is a supervised learning model

• To use stardist we need image
and mask pair. (Input and output
values)

• Stardist is a model and we will
use image J to create such masks
for our images.

• post-processing step involved

Stardist: Understanding
the Working Process

Process

• Stardist model predicts a star shaped polygon for
each pixel of the image.

• For each pixel i,j, it predicts two things as follows:

1. Object probability (di,j):- It is the normalized
Euclidean distance to the nearest background
pixel.

2. Star-convex polygon distances (rk
i,j):- The

Euclidean distances in 32 radial directions till
a pixel with different identity is encountered.

Architecture
• 1 32 32 32 32 1

Input

Layer prob

pi,j

64 64 64

32

dist

128 128 128 32 dk
i ,j

256 64

128

Conv2D , (3,3), “relu” Upsampling, (3,3) MaxPool2D, (2,2) Concatenation

Conv2D , (3,3), “sigmoid”

Training loss
function

• The loss function is the combination of binary cross
entropy loss and distance loss (mean absolute
error) weighted by the true object probabilities:

L(d,rk, d’,rk’) = Lprob (d,d’) + d’ Ldist (d,d’,rk,rk’)

where, (d,r) are predictions and (dk’,rk’) are ground
truth.

Lprob (d,d’) = -d’log(d) – (1-d’)log(1-d’);

Ldist (d,d’,rk,rk’) = 1/32 Σ32
k=1 | rk -r’k |.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250 300

P
ro

b
ab

ilt
y

Number of Epochs

Probability loss vs Number of Epochs

Training Validation

0

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200 250 300

D
is

ta
n

ce

Number of Epochs

Distance loss vs Number of Epochs

Training Validation

Post Process –
Interference

IOU

 IOU (Intersection over Union) is an evaluation metric
calculated as the ratio of the area of intersection
between the predicted and ground truth regions to the
area of union between the two regions.

Probability
Threshold

• After the image runs
through the Neural
network, the algorithm
considers the only pixels
which has probability (di,j)
greater than a certain
threshold.

Non-Maximum
Suppression

• The NMS algorithm works as follows:

• Calculating Confidence Scores

o Sorting by Confidence in descending order

o Suppresses all the polygons with IOU
greater than a certain threshold called
NMS threshold.

o Iterate

Output

Evaluation

• We evaluate the accuracy based on IOU metric of
predicted polygons and ground truth mask.

• Accuracy is calculated as the ratio of true positives
to the total number of labels in the image. It
measures the overall correctness of the model's
segmentation compared to the ground truth.

• To summarize: Average Accuracy = (TP) / (TP + FP
+ FN)

Annotation of image
using LabKit

Opening Image via FIJI for annotation

1. Then go on to plugins and select
LabKit

2. Open current image with Labkit

3. Choose the highest resolution to
open image (3000 x 4000)

• Once image opens through
LabKit; Select add label to
annotate an egg in the
image

• Select the draw icon and
adjust brush size according
to egg size in the image to
capture egg properly

• Start labelling image
following previous step

• One color can only be used
to label one egg

• At the end, number of labels
equals to number of eggs

• Once labelling is done,
select “Labelling” from
the taskbar and then
“Save Labelling”

• Save image as “TIF”

• The labelled image will automatically
be saved in same folder as original
image.

• Masked image can be
previewed by opening the
labelled image in Fiji

• Image in the left gives the
example of masked image

Overview of Training
Process

Training
flowchart

Load Data
Processing

Data

Augmentation
of Data

Splitting of
Data

Train Model Optimization

Loading,
Processing and
Augmenting
Data

• Data Loading

• Loading Data into the program

• Processing

• Conversion to grayscale

• Normalization

• Adjusting image pixels to uniform
intensity scale.

• Augmentation

• Permuting dimensions of the image

• Flipping, rotation, brightness, contrast

• Adding noise

• “Static” or “graininess”

• Benefits

• Increases dataset size

• Boosts model robustness

• Aides in better generalization to new
data

Splitting data
• We need three subsets of images:

• Training

• Validation

• Testing

Training and
Optimizing
Model

• Training the Model

• Adding augmenters and defining epoch

• Optimization

• NMS(Non-Maximum Suppression)

• Optimizing probability threshold for 0.3, 0.4,
and 0.5

• Algorithm tests each threshold and selects
the best

Epochs

Epoch

 In machine learning, an epoch is a sequence of
training steps that makes use of the entire training
dataset one time.

 We were interested in observing how the
performance of our neural network varied based
on the number of epochs allowed for training.

 For each choice of dataset size, we trained models
on that size of dataset with the following numbers
of epochs: 10, 75, 150, 200, 300

 Generally, too small a number of epochs will not
give enough time to train the model. After a while,
the model will plateau in terms of performance with
respect to training epochs.

Training Set of 180
Images, v1

• Accuracy = TP/(TP + FP + FN)

• Recall = TP/(TP + FN)

• Precision = TP/(TP + FP)

• Observe that precision was high after
only 10 epochs, though recall was

low. So, there were many false
negatives, but not many false

positives.

Training Set of 180
Images, v2

• Accuracy = TP/(TP + FP + FN)

• Recall = TP/(TP + FN)

• Precision = TP/(TP + FP)

• In this version, precision was very
low after just 10 epochs, so there

must have been many false
positives.

General
Trends

 In the following slides, we have graphs of
average model accuracy with respect to
training epochs for every model that we

trained.

 Typically, 200 epochs was sufficient to reach
the maximum accuracy. In some cases, we
observed decreased performance on more

epochs of training.

General Trends, v1

General Trends, v2

Dataset sizes

Dataset
Sizes

• 180 image-mask pairs to work with

• Train multiple models with varying data set sizes at
a range of number of epochs

• Ensure that we are not overfitting our data either
by providing excess data or running with too many
epochs

How the Data was Split

80-20 Split of Images
Images training testing

30 24 6
60 48 12
90 72 18

120 96 24
150 120 30
180 144 36

Epochs per
Model

10

75

150

200

300

• This split was done twice using two different versions of each dataset
(denoted v1 and v2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

30 60 90 120 150 180

M
et

ri
cs

Models at 150 Epochs

Metrics vs Models at 150 Epochs

Precision Recall Accuracy f1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

30 60 90 120 150 180

M
et

ri
cs

Models at 300 Epochs

Metrics vs Models at 300 Epochs

Precision Recall Accuracy f1

Results

Example
Image of
2006 Eggs

Example Image After Running StarDist

Accuracy: 99.30%

Recall This Graph,
but now with CI's

StarDist V2 with 180 Images &
300 Epochs

Mean Accuracy: 93.95%

Standard Error: 3.97%

99CI: 83.13-100%

95CI: 85.89-100%

Predicted Image Accuracy:
99.30%

A Note of Redundant Epochs

Future work

Refined dataset

• Early stopping of epochs

• More images(180 total)

• Better quality of images(some fuzzy or low
quality)

• Consistent dimensions
(some images were small)

• Adding more noise(only two images had noise;
note top images)

• Noise would help prevent an improper
prediction like bottom image

• Clustering

• Multiclass predictions

• Distinguishing stage of eggs

• Multiple types of eggs

• Video

• For using StarDist on another
custom dataset for a different
problem

• Made by the DeVision Team

Thank You!

