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Aquatic 
Germplasm 
& Genetic 
Resource 
Center 
(AGGRC)

• The AGGRC's mission is to lead globally in 
developing germplasm repositories and promoting 
the commercialization of genetic resources for 
aquatic species through collaborative efforts. 

• Instead of being a centralized global repository, the 
AGGRC focuses on empowering various 
communities within aquatic species to establish 
their own germplasm repositories by providing 
necessary technologies, practices, and services. 



Aquatic Germplasm 
& Genetic Resource 
Center (AGGRC)

• The main challenge 
addressed is the lack of 
standardization and 
reproducibility in 
cryopreservation for aquatic 
species, which has hindered 
research progress due to 
inefficiency and failures.

• The statistics of the eggs to 
be preserved is important 
for record.



Team DeVision

• The DeVision team is a 
homogenous blend of Professor 
Wolenski and his staff of 
undergraduates and graduate 
student at different years.



Main Goal 



OUR 
MISSION

• Project Goal: The goal of the 
project is to count frog eggs in a 
Petri dish.

• AGGRC's Challenge: AGGRC 
sought MC^2's help to address 
their main challenge, which was 
accurately counting frog eggs, 
especially in a clustered 
environment. Existing methods 
were not performing well in such 
cases.



• Task: We took on the task and developed a program to provide AGGRC with 
a better and faster egg counting solution suitable for both clustered and 
non-clustered eggs.

• Focus on non-clustered Eggs: Throughout the summer of 2023, the team 
concentrated on building a machine-learning model specifically for non-
clustered eggs, aiming to surpass the accuracy and speed of AGGRC's 
current tools.



• Stardist Machine Learning Package: The new model is based on the Stardist 
machine learning package, which utilizes image segmentation and star-
convex polygons to count eggs by identifying cell nuclei.

• Dataset Preparation: To ensure good quality training data, the team 
carefully preprocessed the dataset using the FIJI application and lab kit 
plugins. Each egg was annotated to establish the total egg count.



• Impressive Training Results: During 
the evaluation and training process, 
the team conducted experiments 
using a dataset of frog eggs. The 
model achieved an impressive mean 
accuracy of over 90 percent. 

• Quality Assurance: The meticulous 
dataset annotation and 
preprocessing were done to 
guarantee the model's training 
data's reliability and accuracy.



Tackling the problem 



Brainstorming 

o What can help us solve the image detection 
problem?

o Convolutional Neural Network used for 
computer vision

o One can use the idea of Image 
segmentation specifically, instance or 
semantic segmentation to approach this 
problem.



Image Segmentation 
(Instance and 
Semantic)

• IS - Identifying each object 
and providing them with a 
unique label

• SS - classifying each pixel 
in an image into 
predefined categories or 
classes



Challenges in 
Cell Image 
Segmentation

• When dealing with objects too close to 
each other.

• Misclassification of Pixels

• Merging surrounding cell 
together

• Overlapping Boundaries

• Hard to distinguish individual 
cells

• Small and Irregular Cells 

• wrong localization of cell

• High Sensitivity to Initial 
Segmentation

• Error in cell detection due to 
intial segment 



Stardist 

• Uses star-convex polygons, well-suited 
to approximate the round shapes of 
cell nuclei in microscopy images.

• Utilizes a lightweight neural network 
based on U-Net, making it easy to train 
and use.

• Predicts flexible shape representations



Stardist architecture in 
a Nutshell

• U-net Backbone- Dense 
polygon prediction. 

• Post processing-Polygon 
selection  



Different models for Cell Detection

U-Net (2 class):

• Predicts "cell" and 
"background" 
classes. (bottom up)

• Approx. 1.4 million 
parameters.

• Uses thresholding on 
the cell probability 
map for the final 
result.

U-Net (3 class):

• Similar to U-Net (2 
class).( bottom up)

• Adds "cell boundary" 
class to differentiate 
crowded cells with 
touching borders.

Mask R-CNN:

• State-of-the-art 
instance 
segmentation.

• Combines bounding-
box region proposals 
and mask 
segmentation (Top-
down approach).

• Approx. 45 million 
parameters.

• Involves grid search 
for hyper-
parameters.

StarDist:

• Uses 32 radial 
directions with U-
Net backbone.



Performance 
comparison 
of the 
models 

• Outperforms other methods in predicting 
more plausible cell shapes (e.g., no holes or 
ridges).

• Competitive with state-of-the-art Mask R-CNN, 
while having significantly fewer parameters 
and being easier to train and use.

• Requires minimal hyper-parameter tuning for 
good results.



More on stardist

• It is a supervised learning model 

• To use stardist we need image 
and mask pair. (Input and output 
values)

• Stardist is a model and we will 
use image J to create such masks 
for our images. 

• post-processing step involved



Stardist: Understanding 
the Working Process



Process                                     

• Stardist model predicts a star shaped polygon for 
each pixel of the image.

• For each pixel i,j, it predicts two things as follows:

1. Object probability (di,j):- It is the normalized 
Euclidean distance to the nearest background 
pixel.

2. Star-convex polygon distances (rk
i,j):- The 

Euclidean distances in 32         radial directions till 
a pixel  with different identity is encountered.





Architecture
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Training loss 
function

• The loss function is the combination of binary cross 
entropy loss and distance loss (mean absolute 
error) weighted by the true object probabilities:

L(d,rk, d’,rk’) = Lprob (d,d’)  + d’ Ldist (d,d’,rk,rk’)

where,  (d,r) are predictions and (dk’,rk’) are ground 
truth.

Lprob (d,d’) = -d’log(d) – (1-d’)log(1-d’);

Ldist (d,d’,rk,rk’) = 1/32 Σ32
k=1 | rk -r’k |.
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Post Process –
Interference



IOU

 IOU (Intersection over Union) is an evaluation metric  
calculated as the ratio of the area of intersection 
between the predicted and ground truth regions to the 
area of union between the two regions.



Probability 
Threshold

• After the image runs 
through the Neural 
network, the algorithm 
considers the only pixels 
which has probability (di,j) 
greater than a certain 
threshold.



Non-Maximum 
Suppression

• The NMS algorithm works as follows:

• Calculating Confidence Scores

o Sorting by Confidence in descending order

o Suppresses all the polygons with IOU 
greater than a certain threshold called 
NMS threshold.

o Iterate





Output





Evaluation

• We evaluate the accuracy based on IOU metric of 
predicted polygons and ground truth mask.

• Accuracy is calculated as the ratio of true positives 
to the total number of labels in the image. It 
measures the overall correctness of the model's 
segmentation compared to the ground truth.

• To summarize:  Average Accuracy = (TP) / (TP + FP 
+ FN)



Annotation of image 
using LabKit



Opening Image via FIJI for annotation

1. Then go on to plugins and select 
LabKit

2. Open current image with Labkit

3. Choose the highest resolution to 
open image (3000 x 4000)



• Once image opens through 
LabKit; Select add label to 
annotate an egg in the 
image



• Select the draw icon and 
adjust brush size according 
to egg size in the image to 
capture egg properly



• Start labelling image 
following previous step

• One color can only be used 
to label one egg

• At the end, number of labels 
equals to number of eggs



• Once labelling is done, 
select “Labelling” from 
the taskbar and then 
“Save Labelling” 



• Save image as “TIF”

• The labelled image will automatically 
be saved in same folder as original 
image.



• Masked image can be 
previewed by opening the 
labelled image in Fiji

• Image in the left gives the 
example of masked image



Overview of Training 
Process



Training 
flowchart

Load Data
Processing 

Data

Augmentation 
of Data

Splitting of 
Data

Train Model Optimization



Loading, 
Processing and 
Augmenting  
Data

• Data Loading

• Loading Data into the program

• Processing

• Conversion to grayscale

• Normalization

• Adjusting image pixels to uniform 
intensity scale.

• Augmentation

• Permuting dimensions of the image

• Flipping, rotation, brightness, contrast

• Adding noise

• “Static” or “graininess”

• Benefits

• Increases dataset size

• Boosts model robustness

• Aides in better generalization to new 
data



Splitting data 
• We need three subsets of images:

• Training

• Validation

• Testing



Training and 
Optimizing 
Model 

• Training the Model

• Adding augmenters and defining epoch 

• Optimization

• NMS(Non-Maximum Suppression)

• Optimizing probability threshold for 0.3, 0.4, 
and 0.5

• Algorithm tests each threshold and selects 
the best



Epochs



Epoch

 In machine learning, an epoch is a sequence of 
training steps that makes use of the entire training 
dataset one time.

 We were interested in observing how the 
performance of our neural network varied based 
on the number of epochs allowed for training.

 For each choice of dataset size, we trained models 
on that size of dataset with the following numbers 
of epochs: 10, 75, 150, 200, 300 

 Generally, too small a number of epochs will not 
give enough time to train the model. After a while, 
the model will plateau in terms of performance with 
respect to training epochs.



Training Set of 180 
Images, v1

• Accuracy = TP/(TP + FP + FN)

• Recall = TP/(TP + FN)

• Precision = TP/(TP + FP)

• Observe that precision was high after 
only 10 epochs, though recall was 

low. So, there were many false 
negatives, but not many false 

positives.



Training Set of 180 
Images, v2

• Accuracy = TP/(TP + FP + FN)

• Recall = TP/(TP + FN)

• Precision = TP/(TP + FP)

• In this version, precision was very 
low after just 10 epochs, so there 

must have been many false 
positives.



General 
Trends

 In the following slides, we have graphs of 
average model accuracy with respect to 
training epochs for every model that we 

trained.

 Typically, 200 epochs was sufficient to reach 
the maximum accuracy. In some cases, we 
observed decreased performance on more 

epochs of training.



General Trends, v1



General Trends, v2



Dataset sizes 



Dataset 
Sizes

• 180 image-mask pairs to work with

• Train multiple models with varying data set sizes at 
a range of number of epochs 

• Ensure that we are not overfitting our data either 
by providing excess data or running with too many 
epochs 



How the Data was Split 

80-20 Split of Images
Images training testing

30 24 6
60 48 12
90 72 18

120 96 24
150 120 30
180 144 36

Epochs per 
Model

10

75

150

200

300

• This split was done twice using two different versions of each dataset 
(denoted v1 and v2) 
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Results



Example 
Image of 
2006 Eggs



Example Image After Running StarDist

Accuracy: 99.30% 



Recall This Graph, 
but now with CI's

StarDist V2 with 180 Images & 
300 Epochs

Mean Accuracy: 93.95%

Standard Error: 3.97%

99CI: 83.13-100%

95CI: 85.89-100%

Predicted Image Accuracy: 
99.30%



A Note of Redundant Epochs



Future work



Refined dataset

• Early stopping of epochs

• More images(180 total)

• Better quality of images(some fuzzy or low 
quality)

• Consistent dimensions
(some images were small)

• Adding more noise(only two images had noise; 
note top images)

• Noise would help prevent an improper 
prediction like bottom image



• Clustering

• Multiclass predictions

• Distinguishing stage of eggs

• Multiple types of eggs

• Video

• For using StarDist on another 
custom dataset for a different 
problem

• Made by the DeVision Team



Thank You!


