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The sinking of the RMS Titanic is one of the most infamous 

shipwrecks in history. On April 15, 1912, during her maiden voyage, 

the Titanic sank after colliding with an iceberg, killing 1502 out of 

2224 passengers and crew. This sensational tragedy shocked the 

international community and led to better safety regulations for 

ships. 

 

Introduction 
 

The goal of the project was to predict the survival of passengers based off a set of 

data. We used Kaggle competition "Titanic: Machine Learning from Disaster" (see 

https://www.kaggle.com/c/titanic/data) to retrieve necessary data and evaluate 

accuracy of our predictions. The historical data has been split into two groups, a 

'training set' and a 'test set'. For the training set, we are provided with the outcome 

(whether or not a passenger survived). We used this set to build our model to 

generate predictions for the test set. 

For each passenger in the test set, we had to predict whether or not they survived 

the sinking. Our score was the percentage of correctly predictions.  

In our work, we learned 

 Programming language Python and its libraries NumPy (to perform matrix 

operations) and SciKit-Learn (to apply machine learning algorithms) 

 Several machine learning algorithms (decision tree, random forests, extra 

trees, linear regression) 

 Feature Engineering techniques 

We used 

 Online integrated development environment Cloud 9 (https://c9.io) 

 Python 2.7.6 with the libraries numpy, sklearn, and matplotlib 

 Microsoft Excel 

 

  

https://c9.io/
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Work Plan 
 

1. Learn programming language Python 

2. Learn Shennon Entropy and write Python code to compute Shennon 

Entropy 

3. Get familiar with Kaggle project and try using Pivot Tables in Microsoft 

Excel to analyze the data. 

4. Learn to use SciKit-Learn library in Python, including 

a. Building decision tree 

b. Building Random Forests 

c. Building ExtraTrees 

d. Using Linear Regression algorithm 

5. Performing Feature Engineering, applying machine learning algorithms, and 

analyzing results 
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Training and Test Data 

 

Training and Test data come in CSV file and contain the following fields: 

 Passenger ID 

 Passenger Class 

 Name 

 Sex 

 Age 

 Number of passenger's siblings and spouses on board 

 Number of passenger's parents and children on board 

 Ticket 

 Fare 

 Cabin 

 City where passenger embarked 
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Feature Engineering 
 

Since the data can have missing fields, incomplete fields, or fields containing hidden 

information, a crucial step in building any prediction system is Feature Engineering. 

For instance, the fields Age, Fare, and Embarked in the training and test data, had 

missing values that had to be filled in. The field Name while being useless itself, 

contained passenger's Title (Mr., Mrs., etc.), we also used passenger's surname to 

distinguish families on board of Titanic. Below is the list of all changes that has been 

made to the data. 

Extracting Title from Name 
 

The field Name in the training and test data has the form "Braund, Mr. Owen 

Harris". Since name is unique for each passenger, it is not useful for our prediction 

system. However, a passenger's title can be extracted from his or her name. We 

found 10 titles: 

Index Title Number of occurrences 

0 Col. 4 

1 Dr. 8 

2 Lady 4 

3 Master 61 

4 Miss 262 

5 Mr. 757 

6 Mrs. 198 

7 Ms. 2 

8 Rev. 8 

9 Sir 5 

 

We can see that title may indicate passenger's sex (Mr. vs Mrs.), class (Lady vs 

Mrs.), age (Master vs Mr.), profession (Col., Dr., and Rev.). 

Calculating Family Size 
 

It seems advantageous to calculate family size as follows 

Family_Size = Parents_Children + Siblings_Spouses + 1 
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Extracting Deck from Cabin 

 

The field Cabin in the training and test data has the form "C85", "C125", where C 

refers to the deck label. We found 8 deck labels: A, B, C, D, E, F, G, T. We see deck 

label as a refinement of the passenger's class field since the decks A and B were 

intended for passengers of the first class, etc. 

Extracting Ticket_Code from Ticket 
 

The field Ticket in the training and test data has the form "A/5 21171". Although 

we couldn't understand meaning of letters in front of numbers in the field Ticket, 

we extracted those letters and used them in our prediction system. We found the 

following letters 

Index Ticket Code Number of occurrences 

0 No Code 961 

1 A 42 

2 C 77 

3 F 13 

4 L 1 

5 P 98 

6 S 98 

7 W 19 

 

Filling in missing values in the fields Fare, Embarked, and Age 
 

Since the number of missing values was small, we used median of all Fare values to 

fill in missing Fare fields, and the letter 'S' (most frequent value) for the field 

Embarked. 

In the training and test data, there was significant amount of missing Ages. To fill in 

those, we used Linear Regression algorithm to predict Ages based on all other fields 

except Passenger_ID and Survived. 

Importance of fields 
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Decision Trees algorithm in the library SciKit-Learn allows to evaluate importance 

of each field used for prediction. Below is the chart displaying importance of each 

field. 

 

We can see that the field Sex is the most important one for prediction, followed by 

Title, Fare, Age, Class, Deck, Family_Size, etc. 
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Decision Trees 
 

Our prediction system is based on growing Decision Trees to predict the survival 

status. A typical Decision Tree is pictured below 

 

The basic algorithm for growing Decision Tree: 

1. Start at the root node as parent node 

2. Split the parent node based on field X[i] to minimize the sum of child nodes 

uncertainty (maximize information gain) 

3. Assign training samples to new child nodes 

4. Stop if leave nodes are pure or early stopping criteria is satisfied, otherwise 

repeat step 1 and 2 for each new child node 

 

Stopping Rules: 

1. The leaf nodes are pure 

2. A maximal node depth is reached 

3. Splitting a node does not lead to an information gain 
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In order to measure uncertainty and information gain, we used the formula 

𝐼𝐺(𝐷𝑝) = 𝐼(𝐷𝑝) −
𝑁𝑙𝑒𝑓𝑡

𝑁𝑝
𝐼(𝐷𝑙𝑒𝑓𝑡) −

𝑁𝑟𝑖𝑔ℎ𝑡

𝑁𝑝
𝐼(𝐷𝑟𝑖𝑔ℎ𝑡) 

where 

 𝐼𝐺 : Information Gain 

 𝐼 : Impurity (Uncertainty Measure) 

 𝑁𝑝, 𝑁𝑙𝑒𝑓𝑡 , 𝑁𝑟𝑖𝑔ℎ𝑡  : number of samples in the parent, the left child, and the 

right child nodes 

 𝐷𝑝, 𝐷𝑙𝑒𝑓𝑡 , 𝐷𝑟𝑖𝑔ℎ𝑡 : training subset of the parent, the left child, and the right 

child nodes 

For Uncertainty Measure, we used Entropy defined by 

𝐼(𝑝1, 𝑝2) = −𝑝1 log2 𝑝1 − 𝑝2 log2 𝑝2 

and GINI index defined by 

𝐼(𝑝1, 𝑝2) = 2𝑝1𝑝2 

The graphs of both measures are given below 

Entropy 

GINI 

𝑝1 
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We can see on the graph that when probability of an event is 0 or 1, then the 

uncertainty measure equals to 0, while if probability of an event is close to ½, then 

the uncertainty measure is maximum. 

 

Random Forest and ExtraTrees 
 

One common issue with all machine learning algorithms is Overfitting. For Decision 

Tree, it means growing too large tree (with strong bias, small variation) so it loses 

its ability to generalize the data and to predict the output. In order to deal with 

overfitting, we can grow several decision trees and take the average of their 

predictions. The library SciKit-Learn provides to such algorithm Random Forest and 

ExtraTrees. 

In Random Forest, we grow N decision trees based on randomly selected subset of 

the data and randomly selected M fields, where 𝑀 = √𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑓𝑖𝑒𝑙𝑑𝑠. 

In ExtraTrees, in addition to randomness of subsets of the data and of field, splits 

of nodes are chosen randomly. 
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Conclusion 
 

As a result of our work, we gained valuable experience of building prediction 

systems and achieved our best score on Kaggle: 80.383% of correct predictions (in 

Kaggle leaderboard, it corresponds to positions 477 - 881 out of 3911 participants). 

• We performed featured engineering techniques  

• Changed alphabetic values to numeric 

• Calculated family size 

• Extracted title from name and deck label from ticket number 

• Used linear regression algorithm to fill in missing ages 

• We used several prediction algorithms in python 

• Decision tree 

• Random forests 

• Extra trees 

• We achieved our best score 80.383% correct predictions 
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