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Lectures on Partial Differential Equations and Hilbert Space

1. A linear partial differential equation of physics

We begin by considering the simplest mathematical model of conduction of electricity in
a material body. This is a part of electrostatics. In the body, there is an electric field E
at equilibrium, which gives rise to a static electric current J (steady movement of charge).
The electric field is conservative, meaning that its line integral about any closed curve in the
body vanishes. Equivalently, it is generated by a scalar potential u:

E = −∇u. (1.1)

The electric field exerts a force on charged particles in the medium, causing a current den-
sity J. The current and the electric field are related through a (real-valued) tensor σ; this is
an example of a constitutive relation:

J = σE. (1.2)

In a static situation, the charge density ρ (charge per volume) is constant in time. This
means that the charge flowing out of any region R of the material through its boundary ∂R
must balance the charge entering into the body through an external source, which we denote
by f (charge density per time): ∫

∂R

J · n dS =

∫
R

f. (1.3)

Since this holds for each region R, the Divergence Theorem
∫

∂R
J · n dS =

∫
R
∇·J dV , gives

−∇·J = f. (1.4)

In summary, the fields u, E, J, and f are related as follows:

u = electric potential (energy/charge), (1.5)

E = −∇u = electric field (force/charge), (1.6)

J = σE = −σ∇u = current density (charge/(time·area)), (1.7)

f = −∇·σ∇u = source (charge/(time·volume)). (1.8)

The final equation is our inhomogeneous, linear, scalar, second-order, divergence-form, ellip-
tic, partial differential equation:

−∇·σ∇u = f. (1.9)

This equation can also be obtained through a variational principle: it is the “Euler-
Lagrange” equation corresponding to a certain “Lagrangian density”. We will see that this
method provides valuable insight into the understanding and solution of a PDE. We shall
use some examples to elucidate this principle.
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1.1 The Dirichlet problem

This problem is to find the solution to the conductivity equation (1.9) in a bounded
domain Ω in R3 subject to the condition that the potential u be fixed at values given by a
function g defined on the boundary of Ω:

−∇·σ∇u = f in Ω, (1.10)

u = g on ∂Ω. (1.11)

To derive this system, let us begin with the Lagrangian density associated with an arbi-
trary electric field in the material occupying the region Ω. If u is the (real-valued) potential,
then we denote this density, as a function of x, by L[u], and define it by

L[u](x) = 1
2
σ|∇u|2 − fu (power/volume). (1.12)

The first term is equal to half the product E · J of the electric field and the current. It has
units of power density. Using L, we define the Lagrangian functional L(u) for functions u
defined on Ω:

L[u] =

∫
Ω

L[u](x) dV (x) =

∫
Ω

[
1
2
σ|∇u|2 − fu

]
dV. (1.13)

We now consider the variation of L[u] as it depends on the function u. As we are considering
functions u that satisfy u|∂Ω = g, we allow u to vary in the directions of functions v such that
v|∂Ω = 0. The symbol δL/δu|u0

(v) denotes the variational derivative of L[u] with respect
to variations of u at the function u0 in the direction of v. We compute that, for sufficiently
smooth functions,

δL
δu

∣∣∣∣
u

(v) := lim
h→0

1

h
[L(u+ hv)− L(u)] =

∫
Ω

[σ∇u · ∇v − fv] dV

=

∫
Ω

[−∇·σ∇u− f ] v dV. (1.14)

Now let us seek a critical function u of L, that is, set δL/δu equal to zero. This means
that we seek a function u such that, for all v (equal to zero on ∂Ω), (1.14) vanishes, in other
words,

∇·σ∇u+ f = 0, (1.15)

which is exactly equation (1.10). The boundary condition u|∂Ω = g is enforced separately.
As it is written, it is required that σ∇u be differentiable. But the law expressed by (1.10)

is a merely a more restrictive form of the law of conservation of charge expressed by (1.3),
namely ∫

∂R

σ∇u · n dS =

∫
R

f, (1.16)

for all regions R whose closure is contained in Ω. Notice that only one derivative of u is
required for this formulation. Using similar reasoning, we might as well go back to the
expression (1.14) for the variation of L before integration by parts, and formulate what is
called the “weak form” of the differential equation (1.15):∫

Ω

[σ∇u · ∇v − fv] dV = 0 for all v ∈ C∞0 (Ω̄). (1.17)

u = g on ∂Ω. (1.18)
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This form turns out to be much more useful, for it does not require that the current σ∇u
be differentiable. It also allows the regularity of the tensor σ and the source f to be relaxed
significantly.

Now, what about the existence of a solution to this PDE? Because of the convexity of the
functional L[u] and the convexity of the set of admissible functions, that is, those that satisfy
the boundary condition, if L[u] admits a critical function, this function must minimize L[u].
However, the set of functions that are infinitely differentiable is typically not big enough
to include such a function; we have to complete this space somehow. It turns out that the
set of functions that are natural candidates for solutions to the weak form of the PDE (the
weakly differentiable functions as described in Section 2) is large enough to provide a unique
solution, even for very irregular conductivity tensors and sources.

1.2 The Neumann problem

This is the conductivity problem in which, instead of fixing the values of the potential
on the boundary, the current directed out of the boundary, or −σ∇u · n, is fixed:

−∇·σ∇u = f in Ω, (1.19)

−σ∇u · n = g on ∂Ω. (1.20)

The Lagrangian density for this system is defined for functions that have well-defined bound-
ary values. It has two parts. One part is supported in the interior of Ω and coincides with
that of the Dirichlet problem, and the other part is supported on the boundary of Ω:

L[u] = 1
2
σ|∇u|2 − fu+ gu δ∂Ω (power/volume). (1.21)

The Lagrangian functional is the integral of L[u] over the closure of Ω:

L[u] =

∫
Ω

[
1
2
σ|∇u|2 − fu

]
dV +

∫
∂Ω

gu dS. (1.22)

In the Neumann case, we allow the function u to vary over functions on Ω with arbitrary
boundary values. Setting the variational derivative of L equal to zero for all variations (with
no restrictions on the boundary), gives the system (1.19,1.20). The part of the Lagrangian
arising from the boundary gives rise to the boundary condition on the outward flux. The
weak formulation of the Neumann problem is∫

Ω

[σ∇u · ∇v − fv] dV +

∫
∂Ω

gv dS = 0 for all v ∈ C∞(Ω̄). (1.23)

2. Hilbert space

2.1 Infinite-dimensional linear spaces

Let Ω be an (open) domain in Rd, and let us consider the linear space of complex-valued
functions defined on the closure Ω̄ of Ω that are infinitely many times differentiable. This
space is denoted by C∞(Ω̄) (or C∞ for short), and it is certainly a vector space, or linear
space. Moreover, it does not possess a finite basis, and is therefore infinite-dimensional.
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A basis for an infinite-dimensional linear space is sometimes called a Hamel basis. This is
a linearly independent set of elements of the vector space such that each element of the
space is equal to a unique linear combination of a finite subset of elements from the basis.
It is purely an algebraic object, and, as such, infinite combinations have no meaning in
this context. Infinite combinations (series) require the added analytic structure of a limit,
obtained by endowing the space with a metric.

2.2 Metric, norm, and inner product

2.2.1 The mean-square norm and its abstraction

As we have seen in the Lagrangian functionals above, the integral of the square of a
function plays an important role. Let us denote by V the linear subspace of C∞ consisting
of those functions f such that ∫

Ω

|f |2 <∞. (2.24)

This allows us to define a norm (the mean-square norm) on V by means of

‖f‖ =

(∫
Ω

|f |2
)1/2

. (2.25)

The real-valued function ‖ · ‖ possesses the defining properties of an (abstract) norm:

‖f‖ ≥ 0, with equality if and only if f = 0, (2.26)

‖cf‖ = |c|‖f‖, (2.27)

‖f + g‖ ≤ ‖f‖+ ‖g‖ (triangle inequality). (2.28)

A linear space endowed with a norm is called a normed linear space. A norm defined on
a linear space induces a more general structure called a metric. A metric provides a way to
express a “distance” between elements of the space. A metric d is induced by a norm ‖·‖ by

d(f, g) := ‖f − g‖. (2.29)

An (abstract) metric possesses, by definition, the following properties:

d(f, g) ≥ 0, with equality if and only if f = g, (2.30)

d(f, g) = d(g, f), (2.31)

d(f, h) ≤ d(f, g) + d(g, h) (triangle inequality). (2.32)

A metric does not require an algebraic structure on the space in which it is defined. A set
endowed with a metric is called a metric space. A subset of Rd, for example, is a metric
space, in which the natural metric is a restriction of the usual one on Rd to the subset. A
metric space is thus a more general structure than a normed linear space.

The weak formulation (1.17) of the Dirichlet problem and the last expression in (1.14)
suggests the introduction of the structure of an inner product, which is a pairing 〈·, ·〉 of
functions from V , producing a complex number. A natural inner product on the space V is

〈f, g〉 :=

∫
Ω

fḡ , (2.33)
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in which the bar denotes complex conjugation. We must first make sure that this pairing is
well defined on V . Indeed, if f, g ∈ V , then the pointwise application of the rule 2ab < a2+b2

yields

2

∫
|fg| ≤

∫
|f |2 +

∫
|g|2 <∞. (2.34)

This pairing can be called a (complex) inner product (in a linear space over C) because it
satisfies the following properties required of an (abstract) inner product:

〈f1 + f2, g〉 = 〈f1, g〉+ 〈f2, g〉, (2.35)

〈f, g1 + g2〉 = 〈f, g1〉+ 〈f, g2〉, (2.36)

〈cf, g〉 = c〈f, g〉, (2.37)

〈f, cg〉 = c̄〈f, g〉, (2.38)

〈g, f〉 = 〈f, g〉, (2.39)

〈f, f〉 > 0 if f 6= 0. (2.40)

These properties are not independent; certain of them can be derived from others (for exam-
ple, one can remove the second and fourth properties and derive them from the first, third,
and fifth). A linear space endowed with an inner product is called an inner product space.

The inner product (2.33) on V that we defined above gives rise to the norm (2.25) in a
simple way,

‖f‖2 = 〈f, f〉. (2.41)

In fact, by this rule, each inner product space is also a normed linear space. We have seen,
then, that an inner product is a stronger structure than a norm and a norm is a stronger
structure than a metric. The first two of these subsume a vector space structure.

There arises an interesting question: What property must a norm possess in order that
it be induced by an inner product? The answer is given by the “parallelogram law”, which
is easy to prove for a norm that arises from an inner product.

2‖f‖2 + 2‖g‖2 = ‖f + g‖2 + ‖f − g‖2 (parallelogram law). (2.42)

However, this law is not satisfied by all norms. But a complex normed linear space in which
it is satisfied can be endowed with a unique inner product which gives rise to the norm. That
inner product is obtained from the norm by the so-called “polarization identity”:

〈f, g〉 = 1
4

[
‖f + g‖2 − ‖f − g‖2 + i‖f + ig‖2 − i‖f − ig‖2

]
. (2.43)

2.2.2 The mean-square-gradient norm

Another norm on C∞(Ω̄) that is perhaps more manifestly related to the weak PDE
formulations is one that measures the derivatives of functions. Let us denote by V ′0 the space
of functions f in C∞(Ω̄) such that f |∂Ω = 0 and endowed with the norm

‖f‖′0 :=

∫
Ω

|∇f |2 , f ∈ V ′0 . (2.44)
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This norm is induced by the inner product

〈f, g〉′0 =

∫
Ω

∇f · ∇ḡ , f, g ∈ V ′0 . (2.45)

The formula (2.46) no longer defines a norm if we include all functions in C∞. This
is because all constant functions on Ω return a value of zero, and the first property (2.26)
is violated (and we have only a semi-norm). This indicates that the value of the function
must also contribute to any norm involving the gradient. Let us denote by V ′ the space of
functions f in C∞(Ω̄) endowed with the norm

‖f‖′ :=

(∫
Ω

(
|f |2 + |∇f |2

))1/2

, f ∈ V ′ . (2.46)

This norm is induced by the inner product

〈f, g〉′ =

∫
Ω

(fḡ +∇f · ∇ḡ) , f, g ∈ V ′ . (2.47)

2.3 Completeness

Let us consider the following motivational scenario. We have a sequence of materials
occupying the region Ω, with conductivities given by smooth tensor functions {σn}. The
conductivities typically vary in space (perhaps there is a periodic structure at the microscopic
level), but their values have a common lower bound and a common upper bound. Everything
else in the experiment being the same (boundary values, sources) we obtain solutions un

satisfying the conductivity equation, and they obey the common bound in the mean-square-
gradient norm,

‖un‖′ < M for all n. (2.48)

There is a theorem that states that such a sequence admits a subsequence {unj
}∞j=1 that is

Cauchy in the mean-square norm,

‖unj
− uni

‖ → 0 as i, j →∞. (2.49)

Now the question is, does {unj
} admit a limit in V ? That is, is there a function u ∈ V

such that ‖u − unj
‖ → 0 as n → ∞? Not in general. In order to find “the limit” of the

subsequence, we must relax the conditions on the admissible solution functions.
Another equally important reason to relax the conditions on our functions is that the

conductivities σn may only be piecewise continuous, and the solution to a conductivity
problem will not even have continuous derivatives. In the sequel, we show how to complete
the spaces V , V ′, etc., in order to obtain an adequate theory for solving practical problems
in conductivity. The outcome proves to be have much deeper implications than meet the eye
in the theory of unbounded operators and elliptic partial differential equations.

The abstract way to obtain a limit of a Cauchy sequence in a normed linear space, say V ,
is to form the completion of the space. We will not go into the details of this construction,
but the idea is that each Cauchy sequence in V that does not already have a limit gives rise
to a new element, which will serve as its limit point. Two Cauchy sequences {ui} and {vi}
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such that (ui − vi)→ 0 as i→∞ give rise to the same element. The union of V and all the
new elements form the completion V̄ of V . The norm of V is extended in such a way that the
closure of V is a normed linear space in which each Cauchy sequence has a limit point. Such
a space is called complete. (More generally, one can form the completion of a metric space.)
If V is an inner product space, then V̄ is also an inner product space, in which the inner
product is the natural extension of that on V . A complete normed linear space is called a
Banach space, and a complete inner product space is called a Hilbert space.

So a (complex) Hilbert space is simply a vector space (over C) that is endowed with an
inner product and that is complete with respect to the norm induced by the inner product.
Each finite-dimensional inner product space is complete and is therefore a Hilbert space.
Infinite-dimensional inner product spaces are not necessarily complete; in fact, as we have
seen, this point is the motivation for this section.

2.3.1 Completion of C∞ in the mean-square norm

Now here is the important consideration. Although a Cauchy sequence in V (C∞(Ω̄)
with the mean-square norm) does have a limit in the abstract completion V̄ , this limit will
only be meaningful if it can be realized as a genuine function on Ω that is square-integrable.
Is such a realization possible? The answer is affirmative. In order to construct these limit
functions and thereby realize V̄ as a true function space, we must discover a more general
notion of integration. The appropriate notion in our context is that of Lebesgue integration.
Its full development requires quite a bit of analysis, but it is based on constructing functions
as (upper) limits of increasing sequences of step functions.

sn(x)↗ f(x) as n→∞ for almost all x and each sn is a step function, (2.50)∫
sn ↗

∫
f as n→∞ (definition of

∫
f). (2.51)

Since each step function (on a bounded domain) has a well-defined integral and the value of
limn→∞

∫
sn is independent of the sequence sn used to construct f (this must be proved),

the integral of f , as given by (2.51) is well defined. One also constructs (lower) limits of
decreasing sequences of step functions and their integrals. All of the functions constructed
in this manner and their sums form the linear space of Lebesgue-integrable functions. The
strange terminology “for almost all x” in (2.50) is a necessary technicality in the theory
of Lebesgue integration. Something that is true almost everywhere is true for all x except
for those x in a set that can be covered by a sequence of open balls whose total length is
less than any arbitrarily prescribed number (no matter how small). Such a set is called
a set of measure zero. The Lebesgue integral is extended to unbounded domains Ω in a
straightforward way.

The space of all complex-valued functions on Ω that are square-integrable in the Lebesgue
sense is a complex linear space, and it is endowed with the inner product and norm given by
the same formulas (2.25,2.33) as those for V . The resulting inner-product space is denoted by
L2(Ω), and it contains V as a sub-inner-product space. Two facts about L2(Ω) are important
for us:

• L2(Ω) is complete. It is therefore a Hilbert space.

• C∞(Ω̄) is dense in L2(Ω). This means that each function f ∈ L2(Ω) admits a sequence
{fn} from C∞(Ω̄) that converges to f in the L2-sense, that is, ‖f−fn‖ → 0 as n→∞.
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The first statement fulfills our desire that each Cauchy sequence in V admit a genuine limit
function, although we do not expect this function to be smooth, or even continuous, in
general. The second statement, in light of the first, tells us that L2(Ω) represents concretely
the completion of V (and no more and no less).

Because of the technicality of defining Lebesgue-integral functions, in particular, the
issue of convergence of step functions for almost-all x, or convergence almost everywhere,
one has to make certain that the mean-square norm really does satisfy the properties of a
norm (p. 4). It turns out that it is technically not a norm, but if we identify functions that
are equal almost everywhere, then it is. This means that, if f and g are Lebesgue-square-
integrable and f(x) = g(x) for all x except those in a set of measure zero, then they are
considered to represent the same element of L2(Ω).

2.3.2 Completion of C∞ in the mean-square-gradient norm

The completion of C∞ in the mean-square norm is L2. Now what about its completion
in the mean-square-gradient norm? It is clear that a not only a generalization of integration,
but also a generalization of differentiation (forming the gradient of a function) will have to be
made. We can form the abstract completion of V ′, but again, the limiting elements obtained
from Cauchy sequences in V ′ need to be genuine functions with gradients. Suppose we have
a Cauchy sequence {fn} in V ′, that is,

‖fn − fm‖′2 =

∫
Ω

|fn − fm|2 +

∫
Ω

|∇fn −∇fm|2 → 0 as m,n→∞. (2.52)

It follows that ‖fn − fm‖ → 0 and ‖∇fn −∇fm‖ → 0 also. What we have learned already
is that there is a scalar function f in L2 and a vector function F in (L2)d such that

‖f − fn‖ → 0 as n→∞, (2.53)

‖F −∇fn‖ → 0 as n→∞. (2.54)

The question is, can F be considered to be the gradient of f in a relaxed sense that subsumes
the notion of the classical gradient? The answer is affirmative. To see how to relax the
definition of the gradient, we observe that, for each smooth vector field Φ with compact
support contained in Ω, we have∫

Ω

Φ · ∇f = −
∫

Ω

(∇·Φ)f . (2.55)

Now, one can prove that the integrals
∫

Ω
Φ ·∇f , for all Φ, completely determine ∇f . There-

fore, even if f is a function for which ∇f is not defined classically, we may still be able to
use −

∫
Ω

(∇·Φ)f , which is always well defined, to define a “weak gradient”. We say that f

is weakly differentiable in L2 if there exists a vector field F in (L2(Ω))
2

such that, for
each smooth vector field Φ with compact support contained in Ω, we have∫

Ω

Φ ·G = −
∫

Ω

(∇·Φ)f . (2.56)

Notice that G may not be the classical gradient of any function. In fact, if it is, then it will
be the gradient of f . So we have broadened our set of functions that have gradients. The
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space of all L2 functions that possess a weak L2 gradient is a linear space, and it is endowed
with the norm and inner product given by (2.46,2.45). The resulting inner-product space is
denoted by W 1,2(Ω) (one derivative in L2) or H1. Again, two important facts can be proved:

• W 1,2(Ω) is complete. It is therefore a Hilbert space.

• C∞(Ω̄) is dense in W 1,2(Ω). This means that each function f ∈ W 1,2(Ω) admits a
sequence {fn} from C∞(Ω̄) that converges to f in the norm-square-gradient sense,
that is, ‖f − fn‖′2 → 0, or, equivalently, ‖f − fn‖ and ‖∇f −∇fn‖ both tend to zero
as n→∞. Here, ∇ refers to the operation of taking the weak derivative.

Because of the first statement, we are able to identify with any Cauchy sequence in V ′ a
limit function, whose gradient is understood in the weak sense. In addition, because of the
second statement, the space W 1,2(Ω) is nothing less and nothing more than a realization of
the completion of V ′: it consists of exactly all limit elements of Cauchy sequences in V ′. The
proofs of these statements require some good math.

3. Existence and uniqueness

At this point, we are ready to discuss the existence and uniqueness of solutions to the
weak-form PDEs (1.17) and (1.23). However, these notes are already too long for two
lectures. The idea is that one should look for solutions in the space W 1,2 because the weak
forms are expressed in terms of (generalized) inner products in that space that are bounded
from below and above if σ is likewise bounded on all of Ω. The pertinent theorem is the
Lax-Milgram Theorem, which is a theorem on bounded complex-bilinear forms in Hilbert
space like those appearing in the weak forms we have seen. By placing the PDE in the
context of this theorem, one obtains results on existence and uniqueness.

4. Exercises

1. Derive the formula (1.14).

2. Derive the system (1.19,1.20) by seeking a critical function u of the Lagrangian functional
L[u] (1.22).

3. Prove that C∞(Ω̄) is an infinite-dimensional linear space.

4. Prove that d defined below is a metric on the set S of binary sequences,

S =
{
s = {s0, s1, s2, . . . } : si ∈ {0, 1} for i = 1, . . . ,∞

}
, (4.57)

d(s, t) =
∞∑
i=1

|si − ti|
2i

. (4.58)

5. Prove the “polarization identity” (2.43).

6. Prove that (2.44) and (2.46) define norms.

7. Prove that C∞(Ω̄) is not complete in the mean-square norm.

8. Prove that each finite-dimensional normed linear space is complete.
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9. Prove that the constant function 1 on the interval [0, 1] and the function on [0, 1] that is
equal to 1 at the irrational numbers and 0 at the rational numbers both represent the same
element of L2([0, 1]).

10. Derive equation (2.53).
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