
Tune-Up Lecture Notes

Linear Algebra I

One usually first encounters a vector depicted as a directed line segment
in Euclidean space, or what amounts to the same thing, as an ordered n-tuple
of numbers of the form {ai}i=1,...,n. The former is a geometrical description of
a vector, whereas the latter can be interpreted as an algebraic representation
with respect to a given coordinate system. However, the interplay between
geometry and algebra is not transparant in more general vector spaces that
could be infinite dimensional.

Finite dimensional vector spaces are relatively easy to work with, and
most people have a well developed intuition for them. Infinite dimensional
vector spaces can be considerably more difficult to appreciate, but they arise
naturally in applications as function spaces. A function space consists of all
functions from a given set X to either the real or complex numbers, and
is finite dimensional precisely when the set X is a finite set. Hence the
Euclidean space mentioned above can be viewed as the function space with
X = i = 1, . . . , n. Infinite dimensional spaces require additional concepts in
order to use them effectively, as we shall see in later chapters. But there are
similarities between finite and infinite spaces, as for example, solving partial
differential equations by Hilbert space methods is a close analog to a simpler
method employed in the study finite dimensional spaces. The objective of this
chapter is to explore the basic properties of finite dimensional vector spaces
from an abstract point of view so as to draw similarities and distinctions
between finite versus infinite dimensional spaces.

1 Basic concepts.

A vector space V is a set of objects (called vectors) in association with with
two operations called addition and scalar multiplication. The addition prop-
erty says two vectors can be added together to form another vector, and
scalar multiplication is that a vector can be multiplied by a scalar to form a
new vector. These operations must satisfy some rather transparent axioms
that are listed below. By a scalar, we mean an element of a scalar field F,
which in itself is a set of objects with the operations of addition and multipli-
cation that satisfy a set of axioms. The precise statement of the field axioms
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is rather long and tedious, and since we shall only consider scalar fields that
are either the set of real numbers R or the complex numbers C, we shall
not explicitly state these. Suffice to say that scalars enjoy the usual rules of
addition and multiplication that are familiar to all. The rational numbers Q
is also a scalar field, but Q is not generally encountered in applications since
it is not complete (more on this below). It should be noted that by referring
to a vector space V , it is not just the elements of V that are relevant, but also
the field F. The terminology that V is a real (respectively, complex) vector
space is used if the underlying field F = R (respectively F = C is particularly
important. The precise definition of a vector space follows.

Definition: A vector space V over the scalar field F is a non-empty set on
which addition (+) and scalar multiplication is defined. This means that for
each v1 ∈ V and v2 ∈ V , there is a vector denoted by v1 +v2 that also belongs
to V ; and for each v ∈ V and α ∈ F, there is a vector denoted by αv that
also belongs to V . There is also a special vector in V denoted by 0. These
operations satisfy the following axioms, where v1, v2, v3 ∈ V and α1, α2 ∈ F:
(i) v1 + v2 = v2 + v1 (addition is cumulative)
(ii) (v1 + v2) + v3 = v1 + (v2 + v3) (addition is associative)
(iii) v1 + 0 = v1 (0 is the additive identity)
(iv) there exists w ∈ V so that v1 + w = 0 (existence of additive inverse)
(v) α1(v1 + v2) = α1v1 + α1v2 (distributive law)
(vi) (α1 + α2)v1 = α1v1 + α2v1 (distributive law)
(vii) α1(α2v1) = (α1α2)v1 (scalar multiplication is associative)
(viii) 1v1 = v1 (scalar identity)

One should note that the symbol 0 can be used in two different ways: one
usage as the additive identity in (iii) and the other as the zero element in
the feld. In practice, this should not cause any confusion. It is useful, if for
nothing else then for simplifying the nomenclature, to denote the element w
that appears in (iv) as −v. One can deduce from the distributive property
of scalar multiplication that −v = (−1)v.

It is important to note that a vector space structure does not allow two
vectors to be multiplied. At some later point, product operations will be
introduced, but a general vector space does not have an inherent product.
Also note that abstract vectors do not resemble row or column vectors, but
rather a row or column vector description is an example or a notational
convenience to represent a vector. We shall see this and more in the following
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examples.

2 Examples

We now list several examples of vector spaces. Throughout, the field F can
be either the real numbers R or the complex numbers C.

1) 1) Let V = F with F also as the underlying field. Then V is a vec-
tor space under the field operations of addition and multiplication are
interpreted as the vector addition and scalar multiplication. One can
consider C as a either a real or complex vector space.

2) More generally, let N be a positive integer and V equal the set of an
ordered N -tuple of elements of F written as a row. An element v ∈ V
has the form

v = (α1, α2, . . . , αN)

where each αi ∈ F, n = 1, . . . , N . Addition in V is defined by adding
the corresponding components: if v1 = (α1, α2, . . . , αN) and v2 =
(β1, β2, . . . , βN) belong to V , then

v1 + v2 = (α1 + β1, α2 + β2, . . . , αN + βN)

Scalar multiplication is defined by multiplying each component by the
scalar: if v = (α1, α2, . . . , αN) ∈ V and α ∈ F, then

αv = (αα1, αα2, . . . , ααN).

In a similar manner, one can consider the vector space of N -tuples
written as a column with the same operations. It should cause no
confusion if we use the same notation FN to denote either the row or
column space, although usually it denotes the column space. When the
scalar field is the set of real numbers, these vectors can be interpreted
geometrically as points in the N -dimensional Euclidean space RN .

3) Let V = MMN be the set of all M ×N matrices, where M and N are
positive integers and the elements come from the same scalar field as
the scalars. The operations of addition and scalar multiplication are
defined componentwise in a manner analogous to Example 2. Often,
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elements A ∈ MMN are thought of as maps A : FN → FM that take a
column vector v ∈ RN to the column vector Av ∈ RM that is defined
by the usual matrix multiplication (see below). Note also that MMN

reduces to the space of N -dimensional row vectors if M = 1, and the
space of M -dimensional column vectors if N = 1.

4) Let V = P be the set of all polynomials P of arbitrary degree N , where
N is nonnegative integer. These are of the form

P (t) = α0 + α1t + · · ·+ αN tN ,

where the coefficients α1, . . . , αN belong to F. For fixed N , the space
PN consisting of all polynomials of degree less than or equal to N is
also a vector space. The vector space operations are the usual ones of
elementary algebra.

5) Suppose 1 ≤ p < ∞, and let V be the set of (infinite) sequences

v = {α1, α2, · · · , αn, · · · }

where

‖v‖p :=

[
∞∑

n=1

|αn|p
] 1

p

< ∞.

The addition of two such sequences is done coordinate-wise, and scalar
multiplication is similarly defined. The verification that V is a vector
space requires the fact that the sum of two sequences in V also belongs
to V . The proof of this fact is a direct consequence of Minkowski’s
inequality, which we do not prove, but states that

‖v1 + v2‖p ≤ ‖v1‖p + ‖v2‖p.

The vector space in this example is denoted by lp.

6) The space V = l∞ is defined as the set of bounded sequences. That is,
l∞ consists of those sequences v = {αn}n for which

‖v‖∞ := sup
n∈N

{|α|} < ∞.

The space c0 (respectively c00) consists of the subset of l∞ for which
αn → 0 as n → ∞ (respectively, αn = 0 for all large n). Clearly the
sum of two sequences from, respectively, l∞, c0, and c00 again belongs
to l∞, c0, and c00.
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7) Suppose I ⊆ R is an interval of the real line, and let V = C[I] be the set
of all continuous, F-valued functions defined on I. This again is a vector
space with the usual operations of addition and scalar multiplication.
For k ∈ N, the space Ck(I) of k-times continuously differentiable func-
tions defined on I is likewise a vector space. Further examples could
be given where I is instead a subset of Rn, and/or the range of the
function belongs to Fm.

3 Span, linear independence, and basis.

We assume throughout that V is a given vector space. By the definition
of a vector space, the sum of two vectors is another vector. But it is also
immediate that that the sum of any finite number of vectors is again a vector,
and we give this a name. A linear combination is an expression of the form

v = α1v1 + α2v2 + · · ·+ αNvN

where the αn’s are scalars and the vn’s are vectors. It is immediate that for
any given set of vectors B ⊆ V , the set W consisting of all possible linear
combinations of B again forms a vector space. The space W is called the
span of B, and denoted by W = spanB.

Let B ⊆ V be a set of vectors. Then B is called linearly independent if
for any finite subset of N vectors {vn} of B, the only linear combination of
these vectors that equals zero is the one where the coefficients are all zero.
In other words, if

vn ∈ B, αn ∈ F,
N∑

n=1

αnvn = 0 ⇒ αn = 0 , ∀ n = 1, . . . , N.

B is linearly dependent if there exists N ∈ N, a set of N vectors {vi} ⊆ B,
and N scalars αn not all zero, such that

N∑
n=1

αnvn = 0.

It is clear that any set containing the vector 0 is dependent. It is also imme-
diate that any nonempty subset of an independent set is independent.
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Consider the vectors

v1 =

1
3
1

 , v2 =

−1
−1
−1

 , v3 =

2
5
3

 .

To check if these are independent, suppose there are scalars α1, α2, and α3

for which
α1v1 + α2v2 + α3v3 = 0.

Writing out the equations component-wise leads to the following system of
equations

α1 − α2 + 2α3 = 0

3α1 − α2 + 5α3 = 0

α1 − α2 + 3α3 = 0

which can be readily solved to give the unique solution α1 = α2 = α3 = 0
showing that the vectors are linearly independent.

As another example, consider the vectors

v1 =

1
2
1

 , v2 =

0
1
3

 , v3 =

 1
0
−5

 .

A similar analysis as above leads to a system that has infinitely many solu-
tions of the form (α1, α2, α3) = (s,−2s,−s) where s is a parameter. Thus,
there are αn’s that can be chosen not all zero for which the linear combination
is zero, and consequently, these vectors are linearly dependent.

The concepts of span and independence are brought together in the notion
of a basis.

Definition:A set B ⊆ V of vectors is a basis for V if (i) V = spanB and
(ii) B is linearly independent. 2

It can be shown (although we shall not do it here) that every vector
space has a basis, which is true even if it is not possible to find a finite set
of basis vectors. Our definition of basis is more accurately called a Hamel
basis because all the linear combinations must be finite. However, the more
accurate nomenclature is pertinent only in infinite dimensions, as we shall
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see later. It turns out in fact that Hamel bases in infinite dimensions are
typically useless for applications.

The concept of the dimension of a vector space has already been used
repeatedly, but we have yet to define what it means. We do so now.

Definition: A vector space is said to have dimension N if there exists a
basis consisting of N vectors. If there is no basis consisting of finite many
elements, then the space is said to to be infinite dimensional. 2

For the dimension of a vector space to be well-defined, we must know
that every basis has the same number of elements. This is the content of the
next theorem.

Theorem 3.1. Suppose {v1, v2, · · · , vN} and {w1, w2, · · · , wM} are both bases
for the vector space V . Then N = M .

Proof: Assume the result is false, and without loss of generality, that M <
N . Consider now the set {w1, v1, v2, · · · , vN}. Since the vn’s form a basis,
we can write w1 as a linear combination of these:

w1 =
N∑

n=1

αnvn.

Since w1 is not the vector 0, it is immediate that not all the αn’s are zero.
Reindexing the vn’s if necessary, assume that α1 6= 0, then

v1 =
1

α1

w1 −
N∑

n=2

αn

α1

vn.

We conclude that any vector that can be written as a linear combination of
{v1, v2, · · · , vN} can equally be written as a linear combination of {w1, v2, · · · , vN}.
and thus the latter set spans V . But this set is also independent: suppose
there are scalars β1, . . . , βN satisfying

0 = β1w1 +
N∑

n=2

βn

v n
= β1α1v1 +

N∑
n=2

(
β1αn + βn

)
vn.

Then, since the vn’s are independent, we must have β1α1 = β2α2 + β2 =
· · · = β1αN + βN = 0. Now α1 6= 0, so it follows that β1 = 0, and then
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subsequently each βn = 0 for n = 2, . . . , N . In other words, {w1, v2, · · · , vN}
is linearly independent, and so forms a basis for V .

We now want to repeat the argument and replace one of v2, . . . , vn by w2.
There exist scalars α1, . . . , αN so that

w2 = α1w1 +
N∑

n=2

αnvn,

and not all of α2, . . . , αN can be zero, since otherwise we have w1−α1w2 = 0
which contradicts the fact that the set {w1, w2} is independent. Again by
reindexing if necessary, we can assume α2 6= 0, and by rearranging terms, we
can write

v2 =
1

α2

w2 −
α1

α2

−
N∑

n=3

αn

α2

vn.

Thus in a similar manner as the argument above, we can conclude that
the set {w1, w2, v3, · · · , vN} is a basis for V . After repeating this argument
M times, we have that {w1, w2, w3, · · · , wM , vM+1, . . . , vN} is then a basis.
However, we are also assuming that {w1, w2, w3, · · · , wM} is a basis, and so
vM+1 is a nontrivial linear combination of {w1, w2, w3, · · · , wM}, which is a
contradiction. 2

The above argument also can be used in the infinite dimensional case,
and one can conclude that if there exists one basis that is infinite, then every
basis is infinite. It also follows from the previous theorem that in an N
dimensional space, any set of N linearly independent vectors forms a basis.
It is often easy to find at least one basis since the very description of the
vector space actually invokes a particular coordinate system (this was the
case in Examples 1-4 above). In such a case, it is therefore immediate to
determine the dimension. However, in practice, one seeks a particular basis
that has desirable properties that may differ from the obvious one.

We return to the previous examples of vector spaces and determine their
dimensions.

1) The vector space V = F is one dimensional over the field F, where a basis
is just the multiplicative identity 1. However, C is two dimensional (with
basis {1, i}) if considered as a real vector space.

2) The space of ordered N -tuples (either considered as rows or columns)
N -dimensional, which can be easily seen by noting that the set {e1, . . . , eN}
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is a basis, where the vector en is the element with 0’s in all the positions
except the nth where there is a 1. This basis is called the canonical basis or
usual set of basis vectors. Note that there are many other bases, for example
{e1, e1 + e2, e1 + e2 + e3, . . . , e1 + e2 + · · ·+ eN} is another basis.

3) The vector space MMN of M ×N matrices has dimension MN , since one
can easily verify that the set of matrices {Emn : m = 1, . . . ,M, n = 1, . . . N}
is a basis, where Emn denotes the matrix with 1 in the mth row and nth

column and zeros elsewhere.

4) The set of polynomials P is infinite dimensional, since any finite set of
polynomials would have a maximum degree. In fact, P has a basis given by
{1, t, t2, . . . , tn, . . . }. The subcollection of polynomials PN that have degree
less than or equal to N has dimension N + 1, since the set of polynomials
{1, t, t2, . . . , tN} forms a basis.

5-7) The sequence and function spaces in these examples are all infinite di-
mensional, but unlike the polynomial example, it is impossible to explicitly
give a (Hamel) basis.

The following result reveals some properties of a set of linear indpendent
vectors if the dimension of the space is a priori known.

Theorem 3.2. Suppose V has dimension N and B = {w1, w2, · · · , wM} is
an independent set. Then M ≤ N . If M = N , then B is a basis. If M < N ,
then there exist vectors vM+1, . . . , vN in V so that B ∪ {vM+1, . . . , vN} is a
basis.

Proof: We refer back to the steps of the proof of the previous theorem,
and use the consequences of related arguments. Suppose {v1, . . . , vN} is a
basis for V . If M > N , then the above shows that after possibly reindexing
the vn’s, the set {w1, v2, . . . , vN} is also a basis. After carrying out this
replacement N−1 more times (which only used the property on {mathcalB}
that it was an independent set), we conclude that {w1, . . . , wN} is a basis.
This contradicts that wN+1 is in the span while at the same time being
independent of {w1, . . . , wN}, and hence M ≤ N .

If M = N and B was not a basis, then B must not span V , and so
there exists a vector v not in spanB. We claim that B ∪ {v} is linear in-
dependent. Indeed, suppose

∑N
n=1 αnwn + αN+1v = 0. If αN+1 6= 0, then

v =
∑N

n=1
αn

αN+1
wn belongs to spanB, and so we must have αN+1 = 0. How-

ever, since B is independent, it now follows that all the αn’s are zero, and
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the claim is proven. So we have that B ∪ {v} is an independent set of size
N + 1, which contradicts the previous assertion.

Finally, if M < N , by the previous theorem B is not a basis. Thus since
it is independent, it must not span V , and there exists a vector vM+1 in V
that is not in spanB. As in the previous paragraph, we see that B ∪ {vM+1}
is linearly independent. This argumaent can be repeated a total of N −M
times to select vectors vM+1, . . . vN , and we arrive at a set B∪{vM+1, . . . , vN}
of size N that is independent and therefore must form a basis. 2

3.1 Coordinates.

If B = {v1, . . . , vN} is a basis for a vector space V , then any vector can be
written as a linear combination of the elements of B. Suppose now that the
basis {B} is ordered. Then the ordered set of coefficients which multiply the
basis vectors completely define the vector of the linear combination, which
is the content of the next result.

Theorem 3.3. Suppose {B} = {v1, . . . , vN} is an ordered basis and v ∈ V .
Then there exists a unique element [v]B : (α1, . . . , αN) ∈ FN so that v =
α1v1 + · · ·+ αNvN .

Proof: Let v ∈ V . Since B spans V , there exists (α1, . . . , αN) ∈ FN so
that v = α1v1 + · · · + αNvN . We must prove the uniqueness assertion. Let
(β1, . . . , βN) ∈ FN also satisfy v = β1v1 + · · ·+ βNvN . Then

0 = v − v = (α1 − β1)v1 + · · ·+ (αN − βN)vN ,

and it follows that αn = βn for each n = 1, . . . , N since B is independent.
Thus the representation is unique. 2

Th vector [v]B of ordered coefficients is referred to as the coordinates
or the coordinate representation of the vector relative to the basis B. The
previous theorem helps to clarify the concept of dimension: the dimension of
a vector space is the least number of parameters that are needed to describe
all its elements.

Let us consider R2 with ordered basis {e1, e2}. If (a, b) ∈ R2, then the
coordinate representation of (a, b) in this basis is actually just the same vector
(a, b). However, if a different basis is chosen, for instance B = {(2, 1), (1, 0)},
then the coordinate representation is different. One can find [(a, b)]B by

10



writing the vector as a linear combination (a, b) = α1(2, 1) + α2(1, 0) and
solving the system of equations

α1 + α2 = a

α1 = b

that this generates, from which one finds α1 = b and α2 = a − 2b. The
vector itself is therefore different from its coordinate representation. In fact,
one should think of the original vector as just its representation in the usual
basis, and be mindful that other bases could be used and are often preferred.

Here is another example in the vector space P2. Find the coordinate
representation of the polynomial 1 + t + t2 in each of the two bases

B1 = {1, t− 1, (t− 2)(t− 1)} and B2 = {1, t, t2}

Writing the vector as a linear combination of the basis vectors in B1, one
obtains the equation

1 + t + t2 = α1 + α2(t− 1) + α3(t− 2)(t− 1),

and expanding the right hand side gives

1 + t + t2 = α1 − α2 + 2α3 + t(α2 − 3α3) + α3t
2

Comparing coefficients of terms of equal power on the two sides of the equa-
tion results in the three equations

α3 = 1 , α2 − 3α3 = 1 , α1 − α2 + 2α3 = 1

which are solved for the coordinates

α1 = 3 , α2 = 4 , α3 = 1.

Therefore the coordinate representation can be written simply as [1 + t +
t2]B1 = (3, 4, 1). While this basis required some algebraic calculations, the
other basis, B2, is more convenient, and one can see immediately that [1 +
t + t2]B2 = (1, 1, 1).
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4 Isomorphisms of vector spaces.

4.1 Isomorphisms of vector spaces.

Mathematics is full of objects that can be represented various different ways.
For instance, the multiplicative identity of real numbers can be written as
1, sin2 θ + cos2 θ, 7

7
, e0, etc. A considerable portion of the mathematics used

in engineering is an exercise in finding the representation of an object that
is usable and practical. For instance, a differential equation really contains
the same information as its solution, but the differential equation is not
a very convenient form to use for most purposes. In other situations one
is faced with the problem of determining if two expressions are different
representations of the same object. We have seen above that the same vector
will have different coordinates for different bases. Another familiar example
is the complex numbers C = {x + iy : x, y ∈ mbR}, where it can naturally
be thought of as R2 = {(x, y) : x, y ∈ mbR}. These are not the same spaces,
but they exhibit exactly the same vector space properties since there is a
manner to transfer all such properties from one space into the other.

Suppose V and W are vector spaces over the same field F. A mapping
Ψ : V → W is called a linear operator if Ψ(v1 + v2) = Ψ(v1) + Ψ(v2) for all
v1, v2 ∈ V and Ψ(αv) = αΨ(v) for v ∈ V and α ∈ F. A linear operator
is thus a mapping that preserves the vector space operations. If in addition
Ψ is one-to-one (Ψ(v1) = Ψ)v2) → v1 = v2) and onto (for all w ∈ W , there
exists v ∈ V so that Ψ(v) = w), then Ψ is called an isomorphism from V to
W . If such an isomorphism exists, then the two vector spaces V and W are
said to be isomorphic, a property denoted by V ' W . Informally, two vector
spaces are isomorphic if the only difference between them is the nomenclature
used to designate the elements, where the isomorphism is the rule needed to
change from one type of nomenclature to another.

It is straightforward to show that: (1) the identity map from V to V is
an isomorphism; (2) if Ψ is an isomorphism from V to W , then its inverse
Ψ−1 is well-defined and an isomorphism from W to V ; and (3) if Ψ1 is an
isomorphism from V1 to V2, and Ψ2 is an isomorphism from V2 to V3, then
its inverse Ψ2 ◦ Ψ1 is an isomorphism from V1 to V3. Thus the property of
two vector spaces being isomorphic is an equivalence relation.

One of the surprising features of finite dimensional vector spaces is that
for each finite dimension, there is exactly one equivalence class.
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Theorem 4.1. Two finite dimensional vectors spaces over the same field
have the same dimension if and only if they are isomorphic.

Proof: Suppose V has dimension n. From the above discussion, it suffices to
show that V is isomorphic to Fn. Let B = {v1, . . . , vn} be a basis for V , and
define Ψ : V → Fn by Ψ(v) = [v]B; that is, Ψ maps a vector to its coordinates.
Clearly this map is well-defined and onto, and we have seen above that it is
one-to-one since coordinates are unique. To show that it preserves the vector
space operations, let v = α1v1 + · · · + αnvn and w = β1v1 + · · · + βnvn be
elements in V . Since v + w = (α1 + β1)v1 + · · ·+ (αn + βn)vn, we have

Ψ(v+w) =
(
α1+β1, . . . , αn+βn

)
=

(
α1, . . . , αn

)
+

(
β1, . . . , βn

)
= Ψ(v)+Ψ(w),

and thus Ψ preserves addition. The proof that Ψ preserves scalar multipli-
cation is very similar, and hence tΨ is an isomorphism. 2

This theorem implies that all vector calculations in an n-dimensional
vector space can be carried out in the most natural of n-dimensional spaces.
If the field F = R, then this space is Rn. Thus, there is no need to investigate
the properties of unusual and uncommon finite dimensional vector spaces
because their vectorial properties can all be determined by investigating Rn.
This is the reason for focusing on Rn in the following sections.

It should be remembered, however, that only the algebraic operations of
addition and scalar multiplication are preserved by an isomorphism. Other
natural operations and properties of a particular space do not generally carry
over in any obvious way. For instance, the complex numbers as a real vector
space is isomorphic to R2. There is a natural way to multiply two complex
numbers that is not so natural in R2. Another instance is to consider the
space of polynomials Pn, in which one could consider the roots of its members.
The space Pn is isomorphic to the space Fn+1, but on the face of it, it makes
no sense to speak of a root of an element of Fn+1.

Another caveat is in order for interpreting the above theorem. If two
vector spaces have the same dimension, why not just say they are equal
and dispense with the notion of isomorphism altogether? The reason is that
different vector spaces may have coordinates representing very different con-
cepts, and referring to them as equal would cause confusion by suggesting
that coordinates and vectors from different spaces could be interchanged.
For instance, in problems in mechanics, vectors have coordinates that rep-
resent positions, velocities, angular momentums, forces, and torques. The
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position coordinates are very different from the velocities, and both of these
are different from the forces, etc.

4.2 Subspaces and sums.

Given a vector space V , there are often smaller spaces that naturally sit
inside V but that are vector spaces in the own right. These are called sub-
spaces. For example, the physical world we inhabit and move around is
three-dimensional, but often we work on, say, a piece of paper, which is two-
dimensional. The concept of a subspace is intuitively natural if one thinks of
a line or plane through the origin sitting inside as the Euclidean space R3.
This idea is formalized in the following definition.

Definition: Let W be a subset of the vector space V . The W is a subspace of
V if W is also a vector space in its own right with the operations of addition
and scalar multiplication inherited from V . 2

Since the operations of V already are assumed to satisfy the the axioms of
a vector space, it is immediate that W is a subspace if and only if the addition
of two vectors from W again belongs to W , and that scalar multiplication of
a vector from W again belongs to W . These two criteria can be combined in
one expression by noting that W is a subspace of V if and only if

w1, w2 ∈ W, α ∈ F implies αw1 + w2 ∈ W.

Let us first note a few facts: (1) in every vector space V , there are two
trivial subspaces, namely {0} and the whole space V , (2) if W1 and W2 are
subspaces, then W1 ∩ W2 is also a subspace (3) if {mathcalB} is any set
of vectors in V , then W = spanB is a subspace; (4) every vector space has
subspaces of each dimension less than equal to the dimension of V .

We next give specific examples.
Consider the 2-dimensional Euclidean plane R2, for which we write the

elements as (x, y). Since R2 has dimension 2, the only subspaces that are
not {0} and R2 itself must have dimension 1. Now every subspace of dimen-
sion one has one basis element, so every nontrivial subspace has the form
{α(x0, y0) : α ∈ R} where (x0, y0) ∈ R2 is a nonzero vector. Two obvious
such subspaces are those corresponding to the usual coordinate directions,
i.e. the subspaces consisting of the x-axis where y0 = 0, and the y-axis where
x0 = 0. In general, the subspaces are straight lines through the origin with
a slope of y0/x0.
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In 3-dimensional Euclidean space R3, the nontrivial subspaces are either
one (lines) or two (planes) dimensional. Since every subspace must contain
the origin, the one dimensional subspaces have the form {α(x0, y0, z0) : α ∈
R} for some nonzero (x0, y0, z0) ∈ R3, and the two dimensional ones can be
written as {(x, y, z) : n1x+n2y+n3z = 0} for some nonzero (n1, n2, n3) ∈ R3.
More specifically, the vectors (0, 7, 1) and (1, 2, 3) span a subspace of R3 of
dimension two. The parametric representation of this plane is (α2, 7α1 +
2α2, α1 + 3α2), where α1, α2 ∈ R. This set of points can equivalently be
written as all those points (x, y, z) satisfying 19x + y − 7z = 0.

In n-dimensional Euclidean space Rn, there are two natural ways to de-
scribe subspaces. The parametric description of an m dimensional subspace
W consists of finding vectors that span W . In fact one can find a minimal
spanning set {v1, . . . , vm} (in fact these vectors form a basis for W and so
there must be m of them). Now consider a matrix A whose ith column is
vi. Then W is precisely the range of A thought of as a map from Rm to Rn.
That is, W = {Aw : w ∈ Rm}.

A second way to describe a subspace W of Rn is as the null space of a
certain matrix B ∈ Mnm. If B ∈ Mnm then it can be easily checked that
W = {v : Bv = 0} is a subspace, which is called the null space of B. The
converse is also true, which means that given an m dimensional subspace W ,
then there exists B ∈ Mnm so that W is of this form. We shall see how to
define B later.

Examples of function subspaces include the following. On the real line,
let Pn (n ≥ 0) be the set of polynomials of degree less than or equal to n,
P the set of polynomials of arbitrary degree, and Ck (k ≥ 0) the k-times
continuously differentiable functions, where C0 is just the set of continuous
functions. It is clear that for each nonnegative integers n1 < n2 and k1 < k2,
we have the subset inclusions

Pn1 ⊂ Pn2 ⊂ P ⊂ Ck2 ⊂ Ck1 .

However, since all of these are vector spaces, it is also the case that each
smaller space is a subspace of the larger one.

Evidently, all subspaces must contain the zero element so any two sub-
spaces must have at least this element in common. If the zero element is the
only element that two subspaces have in common, then the two subspaces
are said to be disjoint. This terminology is justified by the following consid-
eration. Suppose B is a linear independent set in V , B1 and B2 are subsets
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of B, and W1 = spanB1 W2 = spanB2. Then the subspaces W1 and W2 are
disjoint subspaces if and only if B1 and B2 are disjoint subsets.

4.3 Vector products.

As we emphasized earlier, there is no generic multiplication of vectors defined
on a vector space. Nonetheless, there are several types of products between
vectors with different characteristics and notation that can be defined. We
explore some of those in this section.

4.3.1 Inner product.

The most widely used product is called the scalar or dot product, and is
defined from Cn × Cn intoC by

v • w =
n∑

i=1

viw̄i (1)

where the overbar indicates complex conjugation (if α = a + ib ∈ C, then its
conjugate is ᾱ = a−ib). One has a similar product defined from Rn×Rn into
R, where the conjugation in the above definition becomes superfluous. As
we shall soon see, the scalar product leads to additional geometric concepts
like length and orthogonality.

A generalization of the scalar product is an inner product, which is defined
axiomatically.
Definition:An inner product is a binary operation which maps two elements
of a complex (resp. real) vector space V into C (resp. R that satisfies the
following properties, where u, v, and w are arbitrary vectors and α is a scalar.

(i) (Additivity) 〈u + v, w〉 = 〈u, w〉+ 〈v, w〉;

(ii) (Homogeneity) 〈αv, w〉 = α〈v, w〉;

(iii) (Conjugate Symmetry) 〈v, w〉 = 〈w, v〉;

(iv) (Positive definiteness) 〈v, v〉 > 0 , if v 6= 0.

Properties (i) and (ii) together are usually referred to as the linearity
properties of the inner product. For real vector spaces, the conjugate in (iii)
is again superfluous. From (i)-(iii), it follows that

〈u, v + αw〉 = 〈u, v〉+ ᾱ〈u, w〉.
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Note also that the symmetry property (iv) says that that the inner product
of a vector with itself is real even if the associated field is complex. The
requirement of positive definiteness is therefore meaningful even when the
vector contains complex elements. A vector space on which an inner product
is defined is called an inner product space. It is easy to check that the scalar
product is an example of an inner product.

Now suppose V is a vector space with an inner product 〈·, ·〉. The length
of a vector v is defined as

|v| =
√
〈v, v〉

and the angle θ between two vectors v and w is defined to satisfy

〈v, w〉 = |v||w| cos θ

A vector v is a unit of normal vector if it has length 1. Any non-zero vector v
can be normalized into a unit vector by dividing it by its length. Note that if
v is a unit vector, then 〈w, v〉 is the length of the orthogonal projection in the
direction of v, and the vector 〈w, v〉v is the component of w in the direction
v. Finally, two vectors, different from zero, are said to be orthogonal if their
inner product is zero. It is important to note that the geometrical concepts
all depend on the particular given inner product - different inner products
will yield different results.

To see how inner products may arise generally, suppose V is a vector
space with a given basis B = {v1, . . . , vn}. Recall that [v]B ∈ Fn denotes the
coordinates of a vector v ∈ V . The inner product associated to B can be
defined as the scalar product of the coordinates of the vectors with repect to
B:

〈v, w〉B = [v]B • [w]B

One can verify that the axioms (i)-(iv) hold. Note that with this inner
product, each basis vector is a unit vector and is orthogonal to every other
basis vector. If V = Cn or Rn, and B is the canonical basis {e1, . . . , en}, then
this inner product coincides with the scalar product.

A basis that has pairwise orthogonal elements is called an orthogonal
basis, and is called an orthonormal basis if in addition each basis element
is a normal vector. We have just seen that any basis is an orthonormal
basis with respect to some inner product, but given an inner product, there
are many such orthonormal bases associated to it. We shall discuss how to
construct some of these later, but next we illustrate the utility and advantage
of working with an orthonormal basis to represent and manipulate vectors.
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Suppose {v1, . . . , vn} is an orthonormal basis and v ∈ V . The coordinate
representation [v]B = (α1, . . . , αn of v means that

v =
n∑

i=1

αivi.

Now fix an index 1 ≤ j ≤ n, and take the inner product of both sides of the
expression with an arbitrary basis vector vj. The additive and homogeneous
properties of the inner product, and the orthonormal assumption on the basis
yields that

〈v, vj〉 =

〈
n∑

i=1

αivi, v

〉
=

n∑
i=1

αi〈vi, vj〉 = αj.

That is, the coordinates of an arbitrary vector v ∈ V with respect to an
orthonormal basis can be found easily be taking the inner of v with the
corresponding basis vector.

4.3.2 Cross product

The cross product v ×w is defined only between vectors v and w in R3, and
is another vector in R3. It can be written several ways,

v × w = |v||w| sin (θvw)nvw

where θvw is the angle between the two vectors and nvw is the unit normal
to the v, w plane, pointing in the direction indicated by the right hand rule
(in a right handed coordinate system) applied to v, w or by the left hand
rule (in a left handed coordinate system). Geometrically, v × w is a vector
of magnitude equal to the area of the parallelogram spanned by v and w,
orthogonal to the plane of this parallelogram, and pointing in the direction
indicated by the right hand rule. An equivalent definition in terms of the
usual coordinate representation v = (v1, v2, v3) and (w = (w1, w2, w3) of the
cross product is

v × w = (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1).

A third form can be given as the determinate (which will be defined below)
of the 3× 3 matrix

v × w =

∣∣∣∣∣∣
e1 e2 e3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣
One can check that v × w = −w × v.
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4.3.3 Triple Scalar Product

The triple scalar product is defined for three vectors of R3 by

[v, w, u] = v • (w × u),

and it equals the volume of the parallelepiped formed by the three vectors.
In terms of coordinates

[v, w, u] = v1(w2u3−w3u2)+v2(w3u1−w1u3)+v3(w1u2−w2u1) =

∣∣∣∣∣∣
v1 v2 v3

w1 w2 w3

u1 u2 u3

∣∣∣∣∣∣
4.3.4 Dyad or outer product.

The dyad or outer product 〉v, w〈 of two vectors v and w in Fn is defined as
the n × n matrix whose entry in the ith row and jth column is viwj. The
outer product is not commutative. For example in R3 with v = (1, 2, 3) and
w = (6,−2, 4), one has

〉v, w〈=

 6 −2 4
12 −4 8
18 −6 12

 and 〉w, v〈=

 6 12 18
−2 −4 −6
4 8 12

 .

4.4 Gram-Schmidt Orthogonalization.

The definition of a basis is purely algebraic and may have nothing to do
with any inherent geometry in the space. We have seen that any basis is
orthonormal with respect to some inner product; however, it often turns out
that a specific inner product is desired and one wants to find an orthonormal
basis with respect to that product. The main example of course is Fn with
the scalar product, but the procedure introduced in this section, known as
Gram-Schmidt orthogonalization, is valid for any given inner product. The
rationale for the procedure is that orthogonal bases are more convenient and
easier to use in practice than non-orthogonal bases. In fact, many engineers
have probably never worked problems with non-orthogonal bases and do
not appreciate the difficulties that could arise if the basis vectors are not
orthogonal. The Gram-Schmidt orthogonalization procedure is an algorithm
that converts a given basis into an orthonormal one with respect to a given
inner product.
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Let {vk}k=1,n be a given, not necessarily orthogonal basis. We shall con-
struct an orthogonal basis {wk}k=1,n in such a way that span{vk : k =
1, . . . , n} = span{vk : k = 1, . . . , n} for each n = 1, . . . , n. It is clear that the
first new basis vector should be w1 = v1. Observe that {v2, w1} is indpen-
dent, which is equivalent to saying v2 − cw1 6= 0 for every c. The idea is to
choose c so that the resulting vector w2 is orthogonal to w1. The value of c
can be easily determined by setting 0 = 〈v2− cw1, w1〉 = 〈v2, w1〉 − c〈w1, w1〉
(by the linearity properties of the inner product), and thus c = 〈v2,w1〉

|w1|2 . The
second new basis vector is thus

w2 = v2 −
〈v2, w1〉
|w1|2

w1.

Clearly span{v1, v2} = span{w1, w2} and {w1, w2} is orthogonal. We con-
tinue this reasoning. Since {v3, w2, w1} is independent, then v3−c1w1−c2w2 6=
0 for all constants c1 and c2 and we want to choose these constants so the
resulting vector is orthogonal to both w1 and w2. Being orthogonal to w1

means that 0 = 〈v3−c1w1−c2w2, w1〉 = 〈v3, w1〉−c1|w1|2, and so c1 = 〈v3,w1〉
|w1|2 .

Similarly, being orthogonal to w2 forces c2 = 〈v3,w2〉
|w2|2 , and w3 is defined as

w3 = v3 −
〈v3, w1〉
|w1|2

w1 −
〈v3, w2〉
|w2|2

w2.

In general, wn is found in the same way and equals

wn = vn −
n−1∑
k=1

〈vn, wk〉
|wk|2

wk.

It is sometimes more convenient to normalize the new basis vector at each
stage by replacing wn as defined above by wn/|wn|. Then an orthonormal
basis {w1, . . . , wn} is produced by the recursive formula

wn =
vn −

∑n−1
k=1〈vn, wk〉wk

|vn −
∑n−1

k=1〈vn, wk〉wk|

The Gram-Schmidt procedure has an attractive geometric interpretation: at
each stage, the new vector wn consists of the subtraction from vn of all
the components of vn that lie in the directions w1, . . . , wn−1, and then is
normalized.
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We illustrate the Gram-Schmidt orthogonalization procedure by consid-
ering the basis B of R4 given by

B =
{
v1, v2, v3, v4

}
=




0
1
2
3

 ,


1
1
0
1

 ,


1
0
2
2

 ,


2
1
2
1




The first vector in the orthogonal basis and needed information is

w1 =


0
1
2
3

 ; |w1| =
√

14.

Since 〈v2, w1〉 = 4, the second orthogonal basis vector is calculated as

w2 =


1
1
0
1

− 2

7


0
1
2
3

 =
1

7


7
5
−4
1

 ; |w2| =
√

91

7
.

We see that 〈v3, w1〉 = 10 and 〈v3, w2〉 = 1
7
, and the third new basis vector

w3 is

w3 =


1
0
2
2

−5

7


0
1
2
3

−(
1

13

) (
1

7

) 
7
5
−4
1

 =
1

13


12
−10
8
−2

 ; |w3| =
2
√

78

13

Finally, since 〈v4, w1〉 = 8, 〈v4, w2〉 = 12
7
, and 〈v4, w3〉 = 28

13
, we have

w4 =


2
1
2
1

− 4

7


0
1
2
3

− 12

91


7
5
−4
1

− 7

78


12
−10
8
−2

 =
1

3


0
2
2
−2

 .

5 Matrices.

Matrices are ordered sets of numbers of the form {an,m}n=1,N ;m=1,M . The
first subscript of an element is said to be the row number of that element,
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the second subscript the column number. The matrix {an,m}n=1,N ;m=1,M is
said to have N rows and M columns. Matrices, if they are not too large, are
usually written as tables of numbers

AN×M =


a1,1 a1,2 · · · a1,M

a2,1 a2,2 · · · a2,M
...

...
. . .

...
aN,1 aN,2 · · · aN,M


The main diagonal of a matrix are the elements with the same row and

column index, an,n. When the number of rows equals the number of columns
a matrix is said to be square. A square matrix is called a diagonal matrix if
the elements outside the main diagonal are zero. A square matrix is said to
be upper triangular if all elements below the diagonal are zero. Similarly a
lower triangular matrix is a square matrix with zeros in the elements above
the diagonal.

The transpose of a matrix A is written AT and is the matrix one obtains
by interchanging the rows and columns of A, i.e. {an,m}T = {am,n} or a1,1 · · · a1,M

...
. . .

...
aN,1 · · · aN,M


T

=

 a1,1 · · · aN,1
...

. . .
...

a1,M · · · aN,M


A matrix is said to be symmetric if it is equal to its own transpose. Only
square matrices can be symmetric. A matrix is antisymmetric or skew-
symmetric if it equals minus its transpose. Only square matrices with ze-
ros in the diagonal elements can be antisymmetric. The identity matrix is
a square matrix with 1’s in the main diagonal and zero’s in the off diagonal
elements.

I =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


If the dimension of the identity matrix is relevant, then we write IN for the
square matrix of size N .
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5.1 Matrix Algebra.

As mentioned earlier, matrices with the same number of N rows and M
columns can be added element by element

{an,m}n=1,N ;m=1,M + {bn,m}n=1,N ;m=1,M = {an,m + bn,m}n=1,N ;m=1,M .

Moreover, multiplication of a matrix by a scalar is defined by α{an,m}n=1,N ;m=1,M =
{αan,m}n=1,N ;m=1,M . These operations satisfy the axioms of a vector space,
and in fact one can easily produce an isomrphism between MN×M and FNM ,
thus MN×M has dimension NM .

In addition to the vector space structure of Mmn, matrices can be mul-
tiplied if the first matrix has the same number of columns as the second has
rows. Suppose A = {amn} ∈ Mmn and B = {bnk} ∈ Mnk are two matrices.
Their product C = {cmk} = AB belongs to Mmk and is given by

cmk =
n∑

n=1

amnbnk.

Matrix algebra operations satisfy many of the familiar properties of arith-
metic, with the notable exception of commutativity of multiplication. One
should note that even if m = n = k, the product AB will generally be differ-
ent from BA, which means that multiplication is not commutative. However,
the following properties hold, where in each case we assume the dimensions
of the matrix are such that the operations are defined.

(i) C(A + B) = CA + CB (left distributive law)
(ii) (A + B)C = AC + BC (right distributive law)
(iii) A(BC) = (AB)C (multiplication is associative)
(iv) If A ∈MMN then IMA = A = AIN (identity)
(v) (AB)T = BT AT (transpose of product)

Suppose A ∈ MMN . Then A has a left inverse if there exists a matrix
A−1

l ∈ MMM satisfying A−1
l A = IM , and has a right inverse if there exists

A−1
r ∈MNN satisfying AA−1

r = IN .
Let us note that the columns of an M×N matrix are independent vectors

in FM if and only if whenever Av = 0 for v ∈ FN , then necessarily v = 0; this
is just another way of writing the definition of linear independence in terms
of matrix multiplication. If A has a left inverse A−1

l , then Av = 0 implies
v = INv = A−1

l Av = 0, and hence the columns of A are independent. In
particular, the existence of a left inverse implies N ≤ M .
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We can apply the same reasoning to the transpose. The transpose of
product rule implies that if A has a right inverse A−1

r , then AT has (A−1
r )T as

a left inverse. Hence in this case, the columns of AT are independent, which is
equivalent to saying the rows of A are independent, and in particular M ≤ N .

If a matrix has both a left and a right inverse, then it follows from above
that M = N . In fact the left and right inverses must be equal, as can be
seen from the following short calculation.

A−1
l = A−1

l (AA−1
r ) = (A−1

l A)A−1
r = A−1

r .

A square matrix A is called invertible if it has a left and right inverse, and
since these must be the same matrix, we write it simply as A−1. We shall
see a later that for a square matrix, the existence of a right inverse implies
the existence of a left one, and vice versa.

We emphasize that not every nonzero matrix has a multiplicative inverse,
which is unlike ordinary numbers. For example, the matrix

A =

(
1 0
0 0

)
has no left inverse because the second row of the product AB will be all zero
for any matrix B.

If the inverse of a square matrix does exist, it is a useful tool for solving
matrix problems. For instance, a set of coupled, linear equations with the
same number of unknowns as equations can be written as Ax = b, so the
solution is simply obtained by premultiplying each side by the inverse of A:
x = A−1b. Even something more general is true: x solves Ax = b if and only
if x solves the system SAx = Sb for any M × M invertible square matrix
S. The goal, then, is to find an invertible matrix S so that the solutions of
SAx = Sb are very simple to find.

5.2 Gauss Elimination.

We now explore systematically how to solve a system Ax = b. Suppose A
is an M × N matrix with entries (amn) and b ∈ RM with components bm.
We seek to find x ∈ mbFN that will satisfy the system of equations Ax = b,
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which written out in full looks like

a1,1x1 + a1,2x2 + · · · + a1,NxN = b1

a2,1x1 + a2,2x2 + · · · + a2,NxN = b2
...

. . .
...

am,1x1 + am,2x2 + · · · + am,NxN = bm
...

. . .
...

aM,1x1 + aM,2x2 + · · · + aM,NxN = bM

There may be no solution at all; for example, if all amn = 0 and one of the
bm 6= 0, there obviously cannot be a solution. Or there may be infinitely
many solutions; for example, with M = 1, N = 2, a11 = a12 = 1, and b1 = 0,
then any x ∈ R2 with x1 = −x2 solves the system. Gauss elimination is a
procedure that routinely converts a system of equations into an equivalent
system (that is, it has exactly the same set of solutions) which is amenable
to determining if solutions exist, and if so, to finding them.

There are two steps to Gauss elimination. The first step is called forward
substitution and obtains an matrix with zeros below the main diagonal. The
second step, called back substitution, aims to obtain zeros above the main
diagonal.

25


