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Abstract

Using the Sigmoid Beverton-Holt Model we pinpoint specific effects
on populations when the parameter value is varied. We will be exploring
three cases in particular: δ = 1, δ < 1, and δ = 2. The real-world effects
of the aformentioned cases will also be explored, specifically the ”Allee
Effect” which states that a population will tend towards extinction if its
density drops below a certain threshold point.

1 Introduction

The Sigmoid Beverton-Holt Model is a discrete-time population model

xn+1 =
axδn

1 + xδn
, n = 0, 1, ... (1)

where a, δ > 0 and the initial condition x0 > 0. In this model xn represents the
population size (or density) in generation n. The case δ = 1 is well known and
studied in the literature and is known as the Beverton-Holt model or Pielou
logistic model. The sigmoid Beverton-Holt model has been used in the fishery
science to help define optimal fishing rates and solve the problem of diminish-
ing stock sizes. The Sigmoid Beverton-Holt Model is especially suited to this
endeavor because it can be adjusted to display instances of multiple equilibiria,
specifically the special case of the Allee Effect (also referred to as Depensation).

According to the Allee Effect, a population whose number of individuals has
decreased past a certain point will spiral towards extinction with no possibility
of succor from intervening measures. This suggests that there exist more than
one equilibria in such environments. Although there is significant evidence sup-
porting the existence of multiple equilbria in natural populations, it remains
difficult to prove. This is partially due to the fact that none of the models
currently used have been able to specify the threshold point (known as Allee
Threshold) that separates the favorable domain from the unfavorable domain
as far as population size (or density) is concerned.

Based on this concept of depensation ”too much fishing” is defined as any
amount of fishing that results in the stock population density falling below the
lower threshold point. In his article, A Proposal for a Threshold Stock Size
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and Maximum Fishing Mortality Rate, Grant G. Thompson attempts to both
prove that depensation exists in natural populations and define the elusive lower
threshold point for population density. The ultimate goal is to be able to prevent
the stock populations from dwindling to the point-of-no-return, thus ensuring
the stock’s survival and longterm production capacity. Thompson also explores
the development of constraints to prevent overfishing and the likely impacts of
implementing said constraints on a given fishery.

All attempts to procure a quantitative model that can predict a specific
lower threshold point for populations have been unsuccessful up to this point.
However, Thompson’s article does manage to arrive at three general constraints
which may serve to prevent overfishing in the industry.

In this paper we will explore three cases of the Sigmoid Beverton-Holt Model.
We will attempt to find the equilibria for each case and confirm the stability of
each.

2 Preliminaries

In this section we introduce some definitions and results that will be useful in
the arguments that follow.

Definition 1 x̄ is an equilibrium of the equation

xn+1 = f(xn), n = 0, 1, ... (2)

if
x̄ = f(x̄).

The corresponding solution of {x̄n} such that

x̄n = x̄

is also called a constant solution or steady-state solution. In such cases
we say that x̄ is a fixed point of the function f.

Definition 2 (Stability) (i) The equilibrium point x̄ of Eq. (2) is called (lo-
cally) stable if for every ε > 0 there exists δ > 0 such that

|x0 − x̄| < δ implies |xn − x̄| < ε for n ≥ 0.

Otherwise, the equilibrium x̄ is called unstable.
(ii) The equilibrium point x̄ of Eq. (2) is called (locally) asymptotically
stable if it is stable and there exists γ such that

|x0 − x̄| < γ implies lim
n→∞

|xn − x̄| = 0.

(iii) The equilibrium point x̄ of Eq. (2) is called globally asymptotically
stable if for every x0

lim
n→∞

|xn − x̄| = 0.
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(iv) The equilibrium point x̄ of Eq. (2) is called globally asymptotically
stable relative to a set S ⊂ R if it is asymptotically stable, and if for every
x0 ∈ S,

lim
n→∞

|xn − x̄| = 0.

(v) The equilibrium point x̄ of Eq. (2) is said to be an attractor with the
basin of attraction S ⊂ R if

lim
n→∞

xn = x̄

for every solution with x0 ∈ S.
(vi) The equilibrium point x̄ of Eq. (2) is said to be a repeller if there exists
η > 0, such that for all x0 with 0 < |x0 − x̄| < η, there exists an integer N ≥ 1
such that

|x0 − x̄| ≥ η.

(vii) The equilibrium point x̄ of Eq. (2) is called (locally) semistable from
the right (left) if for every ε > 0 there exists δ > 0 such that

0 < x0 − x̄ < δ (−δ < x0 − x̄ < 0) implies |xn − x̄| < ε for n ≥ 0.

(viii) The equilibrium point x̄ of Eq. (2) is called (locally) asymptotically
semistable from the right (left) if it is (locally) asymptotically semistable
from the right (left) and there exists γ such that

0 ≤ x0 − x̄ < γ (−γ < x0 − x̄ ≤ 0) implies lim
n→∞

|xn − x̄| = 0.

The following theorem establishes sufficient conditions for local asymptotic
stability:

Theorem 3 Let x̄ be an equilibrium of the difference equation (2) where f is a
continuously differentiable function at x̄.
(i) If

|f ′(x̄)| < 1

then the equilibrium x̄ is locally asymptotically stable.
(ii) If

|f ′(x̄)| > 1

then the equilibrium x̄ is unstable.

In the case when |f ′(x̄)| 6= 1, the equilibrium x̄ is called hyperbolic. Other-
wise it is called nonhyperbolic. The next theorem provides sufficient condtions
for stability in the case when f ′(x̄) = 1 :
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Theorem 4 Given the difference equation xn+1 = f(xn), where x̄ is an equi-
librium and f is continuously differentiable three times, if f ′(x̄) = 1 then we
have one of the following:

1. If f ′′(x̄) 6= 0, then x̄ is semi-stable. More specifically, if f ′′(x̄) < 0, x̄ is
semistable from the right and if f ′′(x̄) > 0, x̄ is semistable from the left.

2. If f ′′(x̄) = 0, and f ′′′(x̄) > 0, x̄ is unstable.

3. If f ′′(x̄) = 0, and f ′′′(x̄) < 0, x̄ is locally asymptotically stable.

The next theorem is a well known result about the convergence of monotone
sequences.

Theorem 5 If a sequence {xn} is monotonic (increasing or decreasing) and
bounded, then the sequence {xn} converges.

3 The case δ = 1

We begin with the Beverton-Holt Model (also known as Pielou Logistic Model),

xn+1 =
axn

1 + xn
, n = 0, 1, ... (3)

To find equilibria we need to solve the equation

x =
ax

1 + x

or
x(1 + x) = ax.

Factoring reveals two solutions for x:

x = 0,

x = a− 1.

Thus, 0 and a− 1 are both equilibrium points of the model

xn+1 =
axn

1 + xn
.

Regardless of the values of a, 0 will always be an equilibirum point for this
model. However, the situation with the equilibrium a− 1 is more complicated.
We will explore three cases, namely: 0 < a < 1, a > 1, and a = 1. In the cases
where 0 < a < 1 and a = 1 we find that the equilibrium x = a− 1 ≤ 0 so it will
be excluded.

The above considerations can be summarized in the following lemma:
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Lemma 6 Consider the Beverton-Holt model (3) where a > 0, x0 > 0. Then
the following statements are true:
(i) If 0 < a ≤ 1, then 0 is the only equilibrium of the equation.
(ii) If a > 1, then the equation has two equilibria: 0 and the positive equilibrium
point x̄ = a− 1.

Next, we will study the stability character of the 0 equilibrium. Let

f(x) =
ax

1 + x
,

then

f ′(x) =
(1 + x)(a)− (ax)(1)

(1 + x)2
=

a

(1 + x)2
.

Since

|f ′(0)| = a

 < 1 if a < 1
= 1 if a = 1
> 1 if a > 1.

according to Theorem 3 it follows that 0 is locally asymptotically stable if 0 <
a < 1 and unstable in the case a > 1.

In the case when a = 1, we have f ′(0) = 1 and we will use Theorem 4. In
this case

f ′′(x) = − 2

(1 + x)3

and we have
f ′′(0) = −2 < 0

so 0 is semi-stable from the right. Since we consider only positive solutions, we
may say that 0 is stable.

Again, we summarize the previous consideration in the following lemma:

Lemma 7 Consider the Beverton-Holt model (3) where a > 0, x0 > 0. Then
the following statements are true:
(i) If 0 < a < 1, then 0 is locally asymptotically stable.
(ii)If a = 1, then 0 is locally stable.
(iii) If a > 1, then 0 is unstable.

In order to be considered globally asymptotically stable and equilibrium
must meet the following two criteria:

1. Equilibrium must be locally asymptotically stable.

2. Equilibirum must attract all non-negative solutions to itself.

So, in order to establish the global asymptotic stability of the 0 equlibrium
in the case 0 < a ≤ 1 we need to prove global attractivity. our model.To do
this we use Theorem 5. We will prove the convergence of the sequence {xn} by
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proving its monotonicity and showing that it is bounded. We will now prove
that the sequence is decreasing by showing that

xn+1 − xn < 0.

Using the recursion equation for this model we can set the left side of the
above equation equal to the right side of our given model:

xn+1 − xn =
axn

1 + xn
− xn = xn(

a− 1− xn
1 + xn

) < 0

because a ≤ 1 and our sequence {xn} contains only positive values. There-
fore the sequence {xn} is monotonically decreasing. Also the sequence {xn} is
positive and

0 < ...xn < xn−1 < ... < x1 < x0

so it is bounded. Therefore according the Theorem 5 it converges. Furthermore,
because {xn} converges, there exists a non-negative real number x, such that

lim
n→∞

xn = x.

Taking the limit of both sides of our recursion equation,

lim
n→∞

xn+1 = lim
n→∞

(
axn

1 + xn
)

and executing one algebraic step,

x =
ax

1 + x

we arrive at the equation x(1 + x) = ax, where the only non-negative solution
is x = 0.

So for 0 < a < 1 the equilibirum does attract all positive solutions. Therefore
we have the following theorem:

Theorem 8 Consider the Beverton-Holt model (3) where 0 < a ≤ 1, x0 > 0.
Then the given model has only one equlibrium 0 which is globally asymptotically
stable.

Next we will focus on the case when a > 1. We already know that our model
has two equilibria: unstable 0 equilibrium and positive equilibrium x̄ = a− 1.

Next we test the stability of our second equilibrium, x = a− 1, by

|f ′(a− 1)| = 1

a
< 1

This verifies that the equilibrium x̄ = a− 1 is locally asymptotically stable.
Also recall that in order to be considered globally asymptotically stable an

equilibrium must be both locally asymptotically stable and be an attractor of
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all positive solutions. Thus we will once again apply Theorem 5 to examine
the global asymptotic stability of our equilibrium x = a − 1 by proving its
monotonicity and showing that it is bounded.

We begin by letting 0 < x0 ≤ a − 1, and showing that 0 < xn ≤ a − 1 for
all n > 0. It can be shown that this is true using a simple induction argument.
Namely, since the function f(x) = ax

1+x is increasing we have

0 < xn+1 = f(xn) =
axn

1 + xn
<

a(a− 1)

1 + (a− 1)
= a.

So by induction we may conclude that 0 < xn ≤ a − 1 for all n > 0, and the
sequence {xn} is bounded.

Next we have

xn+1 − xn = xn(
a− 1− xn

1 + xn
) > 0.

So the sequence {xn} is increasing and bounded by 0 and a − 1, thus, it
converges to a positive limit x. Taking the limit of both sides of the equation it
follows that that x = a − 1, and all solutions with initial conditions satisfying
0 < x0 < a− 1 converge to a− 1.

By a similar argument it can be shown that if x0 > a− 1 the corresponding
solution {xn} is decreasing and converges to a−1. So x = a−1 attracts all pos-
itive solutions and is thus globally asmyptotically stable. Again we summarize
the previous consideration in the following theorem

Theorem 9 Consider the Beverton-Holt model (3) where a > 1, x0 > 0. Then
the given model has two equilibria: ustable 0 equlibrium and globally asymptoti-
cally stable positive equilibrium x̄ = a− 1.

4 The Case δ < 1

In the case δ < 1, we want to examine the existence and stability of equilibria
of the difference equation

xn+1 =
axδ

1 + xn
δ
, n = 0, 1, ...

where δ < 1, a > 0, and x0 > 0.
To find the equilibria we need to solve the equation

x =
axδ

1 + xδ

or
(1 + xδ)x = axδ.

Clearly 0 is always a solution. To see if there are other solutions we divide both
sides by xδ and obtain

x1−δ + x = a
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or
x1−δ + x− a = 0.

Now let
g(x) = x1−δ + x− a.

Then
g′(x) = (1− δ)x−δ + 1,

so for all x > 0, g′(x) > 0 and therefore g(x) is an increasing and continuous
function.

Since g is a continuous real valued function we can apply the Intermediate
Value Theorem to prove that there exists a unique solution where there is an
equilibrium other than 0. Since g(0) = −a < 0 and g(∞) = limx→∞ g(x) = ∞
it follows that there exists B > 0, such that g(B) > 0 and g(x) > 0 for x > B.
So by applying the Intermediate Value Theorem we obtain that there exists a
unique solution of g(x) = 0 and that is our positive equilibrium x̄.

Since we know that there exists a unique positive equilibrium x̄ we will
examine its stability. To do this we consider the function

f(x) =
axδ

1 + xδ

and find f ′(x):

f ′(x) =
(1 + xδ)δaxδ−1 − axδ(δxδ−1

(1 + xδ)2
=
δaxδ−1 + δax2δ−1 − δax2δ−1

(1 + xδ)2
=

δaxδ−1

(1 + xδ)2
.

So

f ′(x̄) =
δax̄δ−1

(1 + x̄δ)2
.

Since
1 + x̄δ = ax̄δ−1

we have

f ′(x̄) =
δax̄δ−1

(axδ−1)2
=

δ

ax̄δ−1
.

Since f ′(x̄) > 0, the condition for local asymptotic stability

|f ′(x̄)| < 1

is equivalent to
δ < ax̄δ−1

or

(
δ

a
)

1
δ−1 > x̄.

Since g is an increasing function the above condition is equivalent to

g((
δ

a
)

1
δ−1 ) > g(x̄) = 0.
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Since

g((
δ

a
)

1
δ−1

) =

(
(
δ

a
)

1
δ−1

)1−δ

+ (
δ

a
)

1
δ−1

− a

=
a

δ
− a+ (

δ

a
)

1
δ−1

=
a(1− δ)

δ
+ (

δ

a
)

1
δ−1

> 0,

We know ( δa )
1
δ−1 > x̄, which implies f ′(x) < 1. Therefore we have shown the

equilibrium x̄ is locally asymptotically stable.
Regarding 0 equilibrium we obtain that f ′(0) is undefined, more precisely

f ′(0+) =∞ and the 0 equilibrium is unstable.
We now proceed to test our positive equilibrium x̄ for global asymptotic

stability. Since

f ′(x) =
δaxδ−1

(1 + xδ)2
> 0

the function f is increasing. Next, we examine the fitness function f(x)
x . Thus

we arrive at the following:

f(x)

x
=
axδ−1

1 + xδ
=

a

x1−δ(1 + xδ)
.

Since both exponents are positive we see that the fitness function is decreasing.

As a result, if x < x̄ then f(x)
x > f(x̄)

x̄ . However, we also know that f(x̄) = x̄,

since x̄ represents equilibrium. This means that f(x)
x > 1 ⇒ f(x) > x when

x < x̄. Similarly, f(x) < x if x > x̄.
Now we want to examine the case when x0 < x̄. To show that xn < x̄ for

all n we will use induction. We know x0 < x̄ by assumption. So assume xk < x̄
for some k > 0, and look at xk+1. Now

xk+1 = f(xk) < f(x̄) = x̄

because xk < x̄ and f is an increasing function. Therefore xk+1 < x̄ and the
result holds by induction.

To show monotonicity we use our standard test: xn+1 − xn where if it is
greater than 0 then the sequence is increasing and, similarly, if it is less than 0
then it is decreasing. So

xn+1 − xn = f(xn)− xn > 0

since f(x) > x when x < x̄. Therefore we have a sequence {xn} that is bounded
and increasing monotonically. So {xn} converges to a positive limit x.

Lastly, we take the fact that xn+1 = axn
δ

1+xnδ
and take the limit of both sides;

which results in the equation x = axδ

1+xδ
. At this point we know that the only
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non-zero solution to this equation is x̄. So x̄ attracts all solutions for x < x̄. By
a similar argument we can show that x̄ attracts all solutions for x > x̄, thus x̄
is globally asymptotically stable.

So we summarize the previous consideration in the following result:

Theorem 10 Consider the Sigmoid Beverton-Holt model (1) where 0 < δ <
1, a > 0, x0 > 0. Then the model has two equilibria: unstable 0 equilibrium and
globally asymptotically stable positive equilibrium x̄.

5 The Case δ = 2

Here we have the case where δ = 2. So our model is

xn+1 =
axn

2

1 + xn
2 . (4)

To find equilibria we need to solve the equation:

x =
ax2

1 + x2 .

In order to find its equilibrium we must solve this equation for x. Doing some
simple algebra we determine the equilibria to be x = 0 and solutions to the
equation x2 − ax+ 1 = 0. We employ the quadratic formula to find:

x =
a±
√
a2 − 4

2
.

From looking at the determinant of the quadratic equation we see that there
are three distinct cases for our model when δ = 2:

1. If a < 2, the model has only 0 as an equilibrium.

2. If a = 2, the model has two equilibria: the 0 equlibrium and the positive
equilibrium x̄ = 1.

3. If a > 2 the model has three equilibria: the 0 equilibrium and two positive

equilibria x̃ = a−
√
a2−4
2 and x̄ = a+

√
a2−4
2 .

Beginning with the case where a < 2 we test the stability of the only equi-
librium, x = 0, by plugging it into the derivative of the original function.

f ′(x) =
(1 + x2)2ax− ax2(2x)

(1 + x2)
2

=
2ax+ 2ax3 − 2ax3

(1 + x2)2

=
2ax

(1 + x2)
2 ,
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which simplifies as follows:

f ′(0) =
0

1
= 0.

So x = 0 is locally asymptotically stable.
Now we will show that the sequence {xn} converges. However, to do so we

must first show that {xn} is decreasing monotonically. We will show this by
proving xn+1 − xn < 0.

xn+1 − xn =
axn

2

1 + xn
2 − xn =

axn
2 − xn(1 + xn

2)

1 + xn
2 = xn(

axn − 1− xn2

1 + xn
2 )

Since the sequence {xn} is always positive, the only part of the equation in
question is h(xn) = −xn2 + axn − 1, which represents a downward opening
parabola. Therefore, if the y-value of the vertex of the parabola is less than 0
the expression is always negative.

Since −xn2 +axn−1 has its vertex at the point (− b
2a ,h( b

2a )), we can simply
plug in values to find whether the vertex lies below or above the x-axis:

(
−a
−2

, h(
−a
−2

)) = (
a

2
,−1).

Thus the vertex is found to lie below the x-axis, meaning the expression −x2
n +

axn − 1 is always negative. So xn(−xn
2+axn−1
1+x2 ) < 0. Therefore the sequence

{xn} is decreasing and bounded with 0 < xn < x0 for all n > 0.
Since {xn} is bounded and decreasing then, by Theorem 5, it converges. So

there is a nonnegative x such that

lim
n→∞

xn = x.

Then,

lim
n→∞

xn+1 = lim
n→∞

(
axn

2

1 + xn
2 )⇒ x =

ax2

1 + x2

Since a < 2, x = 0. So it follows that the equilibrium x = 0 is globally
asymptotically stable.

We summarize the above consideration in the following theorem:

Theorem 11 Consider the Sigmoid Beverton-Holt model (4) where 0 < a <
2, x0 > 0. Then 0 is the only equilibrium and it is globally asymptotically stable.

Next we have the case where a = 2. The model has two equilibria, 0 and
x̄ = 1. Since

f ′(x) =
2ax

(1 + x2)
2

we have
|f ′(0)| = 0 < 1,
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so 0 is locally asymptotically stable. Furthermore

f ′(1) =
2a

4
=

4

4
= 1

so we need to use Theorem 4. Then

f ′′(x) =
(1 + x2)22a− 2ax(2(1 + x2)2x)

(1 + x2)4
=

2a(1− 3x2)

(1 + x2)3

f ′′(1) =
−3a

4
< 0

Since f ′′(1) < 0, then x̄ = 1 is unstable, but it is semi-stable from the right.
So now we will show, using the Monotonic Convergence Theorem, that neither
x = 0, or x = 1 is globally asymptotically stable in this case.

We begin by showing that when 0 < x0 < x̄ the sequence {xn} converges.

xn+1 − xn =
ax2

n

1 + x2
n

− xn

From an argument already stated we know that the sequence {xn} is non-
increasing. So {xn} is bounded and monotonic, therefore it converges to 0.

By a similar argument we can conclude that when x0 > x̄, {xn} converges
to x̄. So we have the following result:

Theorem 12 Consider the Sigmoid Beverton-Holt model (4) where a = 2, x0 >
0. Then the following statements are true:
(i) The model has two equilibria 0 and 1.
(ii) 0 is locally asymptotically stable with basin of attraction [0, 1).
(iii) 1 is locally asymoptotically semistable from the right with the basin of at-
traction (1,∞).

Finally we will examine the case when a > 2 and δ = 2. Recall that we have
three equilibria 0, x̃ and x̄ where

x̃ =
a−
√
a2 − 4

2
and x̄ =

a+
√
a2 − 4

2
.

We find the stability of the equilibria as follows:

f ′(x) =
2ax(1 + x2)− 2x(2ax)

(1 + x2)2
=

2ax

(1 + x2)
2 .

Each equilibrium must be substituted in for the x value.

f ′(0) =
2a(0)

(1 + 02)2
=

0

1
= 0 < 1

f ′(x̄) =
2ax̄

(1 + x̄2)2
=

2ax̄

(ax̄)2
=

2

ax̄
=

2

a(a+
√
a2−4
2 )

=
4

a2 + a
√
a2 − 4

< 1

f ′(x̃) =
2ax̃

(1 + x̃2)
2 =

2ax̃

(ax̃)
2 =

2

ax̃
=

2

a(a−
√
a2−4
4 )

=
4

a2 − a
√
a2 − 4

> 1
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The results show that 0 and x̄ are both locally stable equilibria. On the other
hand, x̃ is unstable.

Next, we will show that when x0 < x̃, xn < x̃ for all n > 0. We know x0 < x̃
by assumption, so assume xk < x̃ and look at xk+1:

xk+1 =
axk

2

1 + xk
2 <

ax̃2

1 + x̃2 = x̃.

Thus when x0 < x̃, xn < x̃ for all n > 0 by induction. Now we will examine the
monotonicity of {xn} by looking at xn+1 − xn:

xn+1 − xn =
axn

2

1 + xn
2 − xn = xn(

axn − 1− x2
n

(1 + x2
n)

)

When xn < x̃, ax2
n − 1 − x2

n < 0, so xn+1 − xn < 0. Thus {xn} is decreasing.
By Theorem 5 {xn} converges and, since {xn} decreases and xn < x̃, it must
converge to 0.

Next we will look at the case where x̃ < x0 < x̄, we will show that x̃ < xn < x̄
for all n > 0. Assume that the result holds for xk and look at xk+1.

xk+1 =
axk

2

1 + xk
2 >

ax̃2

1 + x̃2 = x̃

xk+1 =
axk

2

1 + xk
2 <

ax̄2

1 + x̄2 = x̄xn+1 − xn =
axn

2

1 + xn
2 − xn = xn(

axn − 1− xn2

1 + xn
2 ).

So x̃ < xn < x̄ for all n > 0. Now we will examine the monotonicity of the
sequence {xn}, where axn − 1 − xn2 > 0 when x̃ < xn < x̄. This shows that
{xn} increases and is attracted to x̄.

By an argument similar to the one used for x0 < x̃, we can show that when
x0 > x̄ the sequence {xn} converges to x̄. Thus, x̄ is locally asymptotically
stable. So we have the following result:

Theorem 13 Consider the Sigmoid Beverton-Holt model (4) where a > 2, x0 >
0. Then the following statements are true:

(i) The model has three equilibria 0 and two positive equilibria x̃ = a−
√
a2−4
2

and x̄ = a+
√
a2−4
2 .

(ii) 0 is locally asymptotically stable with basin of attraction [0, x̃).
(iii) x̃ is ustable.
(iii) x̄ is locally asymoptotically stable with basin of attraction (x̃,∞).
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