The Sigmoid Beverton-Holt Model

William Bradford, Suzette Lake, Terrence Tappin, Simeon Weatherby
Louisiana State University SMILE Program

August 24, 2010

General Definition

The Sigmoid Beverton-Holt Model

$$
x_{n+1}=\frac{a x_{n}{ }^{\delta}}{1+x_{n}{ }^{\delta}}
$$

General Definition

The Sigmoid Beverton-Holt Model

$$
x_{n+1}=\frac{a x_{n}^{\delta}}{1+x_{n}^{\delta}}
$$

What exactly is the Sigmoid Beverton-Holt Model?

A discrete-time population model that uses a function of the number of individuals in the present generation to provide the expected population density for subsequent generations.

Applications

How does the SBHM apply to the real-world?

The SBHM can be used to:
(1) Define optimal fishing rates to prevent diminishing stock sizes in the fishery industry.
(2) Foresee the extinction of a given natural population.
(3) Calculate insurance costs.
(1) Estimate the future population density of a given natural population.
(5) Predict most future trends in natural populations.

Overview

What are we going to do with the SBHM?

Let's take a look at what happens when the parameter value, δ, is varied. We explored three cases in particular:

$$
\begin{aligned}
& \delta=1 \\
& \delta<1 \\
& \delta=2
\end{aligned}
$$

Let's take it step-by-step, using the case $\delta=1$ as our example.

The $\delta=1$ Case

Step 1: Set Value for δ

Start with the SBHM, $x_{n+1}=\frac{a x_{n}{ }^{\delta}}{1+x_{n}{ }^{\delta}}$, and set a value for δ. Here we have chosen $\delta=1$ where $0<a<1$, as shown below:

$$
x_{n+1}=\frac{a x_{n}^{\delta}}{1+x_{n}^{\delta}}
$$

The $\delta=1$ Case

Step 1: Set Value for δ

Start with the SBHM, $x_{n+1}=\frac{a x_{n}{ }^{\delta}}{1+x_{n}{ }^{\delta}}$, and set a value for δ. Here we have chosen $\delta=1$ where $0<a<1$, as shown below:

$$
x_{n+1}=\frac{a x_{n}{ }^{\delta}}{1+x_{n}{ }^{\delta}} \Rightarrow x_{n+1}=\frac{a x_{n}}{1+x_{n}}
$$

when $\delta=1$.

IMPORTANT KEY TERM!

Equilibrium

A condition in which all acting influences are cancelled by others, resulting in a stable, balanced, or unchanging system.

The $\delta=1$ Case

Step 2: Simplify and Solve for x

Simplify the equilibrium equation and solve for x to find the equilibria.

$$
x=\frac{a x}{1+x} \Rightarrow x(1+x)=a x
$$

Which results in two equilibria: $x=0 x=a-1$
Note: Since we are looking at instances where $0<a<1$, we will discard $x=a-1$ because it does not provide a positive solution.

IMPORTANT KEY TERM!

Local Asymptotic Stability

If the result of plugging the equilibrium value into the derivative of the equilibrium equation is between -1 and 1 , then it is L.A.S.

The $\delta=1$ Case

Step 3: Test for Local Asymptotic Stability

Now we test the remaining equilibrium, $x=0$, for L.A.S.
First we find the derivative of the equilibrium equation:

$$
f^{\prime}(x)=\frac{a}{(1+x)^{2}}
$$

Then we plug in our equilibrium value of 0 :

$$
f^{\prime}(0)=\frac{a}{1}
$$

The result is less than 1 for all $0<a<1$. Since this falls between -1 and 1 the equilibrium is L.A.S.

IMPORTANT KEY TERM!

Global Asymptotic Stability

If the sequence is shown to be both bounded and increasing/decreasing monotonically, then it is known to be G.A.S.

The $\delta=1$ Case

Step 4: Test for Global Asymptotic Stability

Since $x=0$ is L.A.S., we can now test it for G.A.S. by proving convergence.

To prove convergence two criteria must be satisfied:
(1) Sequence must be increasing or decreasing monotonically
(2) Sequence must be bounded

IMPORTANT KEY TERM!

Monotonic Convergence Theorem

If a sequence $\left\{x_{n}\right\}$ is monotonic (increasing or decreasing) and bounded, then the sequence $\left\{x_{n}\right\}$ converges.

The $\delta=1$ Case

Step 5: Prove Monotonicity

To prove monotonicity we set our recursion equation equal to our model and solve:

$$
x_{n+1}-x_{n}=\frac{a x_{n}}{1+x_{n}}-x_{n}
$$

The resulting expression, $x_{n}\left(\frac{a-1-x_{n}}{1+x_{n}}\right)$, is negative; so the sequence is decreasing monotonically.

The $\delta=1$ Case

Step 6: Prove the Sequence is Bounded

Since the sequence $\left\{x_{n}\right\}$ is decreasing ($x_{n+1}<x_{n}<\ldots<x_{2}<x_{1}<x_{0}$), and x_{m} is greater than 0 for all m, we arrive at the following inequality:

$$
0<x_{m} \leq x_{0} .
$$

Which tells us that the sequence is bounded by 0 and x_{0}. The sequence is both monotonic and bounded, therefore it is G.A.S.

The $\delta=1$ Case

Graph: $\delta=1, a=1$, initial value $=.35$

The $\delta=1$ Case

Graph: $\delta=1, a=1$, initial value $=1$

The $\delta=1$ Case

The $\delta=1$ Case

Summation of $\delta=1$ Case

We have now shown our equilibrium, $x=0$, to be not only L.A.S. but also G.A.S. for our model when $\delta=1$ where $0<a<1$. The same step-by-step process just used in our $\delta=1$ case was also employed in our other two cases, where $\delta<1$ and $\delta=2$.

References

围 Kocic，Vlajko．Xavier University of Louisiana（2010）
Lecture Notes，Louisiana State University Smile Program．
Slides June 10 －July 7.
Rempson，G．G．textitln S．J．Smith，J．J．Hunt and D．Rivard［ed．］Risk Evaluation and Biological Reference Points for Fisheries Management．（1993） A Proposal for a Threshold Stock Size and Maximum Fishing Mortality Rate Can．Spec．Publ．Fish．Aquat．Sci．120．p．303－320．
囯 Software E\＆F Chaos（software）
Documentation downloaded from
http：／／www1．fee．uva．nl／cendef／whoiswho／makehp／page．asp？i［D＝19
固 C．Diks，C．Hommes，V．Panchenko，R．vander Wielde，E\＆F Chaos：a user friendly software package for nonlinear dynamics
Computational Economics 32，221－244．

The End

