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THE EXISTENCE AND STABILITY OF EQUILIBRIA
OF THE GENERALIZED RICKER’S MODEL

ANDREW STEWART, SCOTT DEAN, JAMES BOFFENMYER,
AND WILLIE BELL III

Abstract. To properly understand the behavior of the General-
ized Ricker Population Model we must first do a complete stability
analysis. This includes finding the equilibria of the model in certain
general cases, determining stability at each point, and establishing
attractivity of each of these equilibrium points.
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1. Introduction

In this paper we study the existence and the stability of equilibria
of the generalized Ricker’s population model

(1.1) xn+1 = x�ne
r−xn , n = 0, 1, ...

where r, � > 0, the initial condition x0 > 0. In this model xn repre-
sents the population size (or density) in generation n. This model is
intruduced in [2] and represents the generilization of classical Ricker’s
population model (case � = 1)

(1.2) xn+1 = xne
r−xn , n = 0, 1, ...

which has been thoroughly studied in the literature.
The Ricker Population Model, named after Bill Ricker in 1954, is

a famous population model which expresses the expected number of
individuals in a given generation as a function of the number of in-
dividuals in the previous generation. Since the beginnings of Ricker’s
Model, there have been numerous discoveries, mainly in the fishery sci-
ences, but also in the biological sciences to study the dynamics of how
a population will react to any given effect to their ecosystem. It is also
known that the model exhibits ”complex dynamics” including period
doubling bifurcations and chaotic behavior.

For very small populations, the reproduction and survival rates of
individuals increase with population density. This contrasts with larger

1LSU Summer Math Integrated Learning Experience
Date: Friday July 9, 2010.

1



populations, where greater population density slows the growth rate of
the population due to competition.

2. Preliminaries

In this section we introduce some definitions and theorems that will
be useful in the sequel.

Definition 2.1. x̄ is an equilibrium of the equation

(2.1) xn+1 = f(xn), n = 0, 1, ...

if

x̄ = f(x̄).

The corresponding solution {x̄n} such that

x̄n = x̄

is called also a constant solution or steady-state solution. Also,
in such cases we say that x̄ is a fixed point of the function f.

Definition 2.2. (Stability) (i) The equilibrium point x̄ of Eq. (??) is
called (locally) stable if for every � > 0 there exists � > 0 such that

∣x0 − x̄∣ < � implies ∣xn − x̄∣ < � for n ≥ 0.

Otherwise, the equilibrium x̄ is called unstable.
(ii) The equilibrium point x̄ of Eq. (??) is called (locally) asymp-
totically stable (LAS) if it is stable and there exists  such that

∣x0 − x̄∣ <  implies lim
n→∞

∣xn − x̄∣ = 0.

(iii) The equilibrium point x̄ of Eq. (??) is called globally asymp-
totically stable (GAS)if for every x0

lim
n→∞

∣xn − x̄∣ = 0.

(iv) The equilibrium point x̄ of Eq. (??) is called globally asymptot-
ically stable relative to a set S ⊂ ℝ if it is asymptotically stable,
and if for every x0 ∈ S,

lim
n→∞

∣xn − x̄∣ = 0.

(v) The equilibrium point x̄ of Eq. (??) is said to be an attractor
with the basin of attraction S ⊂ ℝ if

lim
n→∞

xn = x̄
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for every solution with x0 ∈ S.
(vi) The equilibrium point x̄ of Eq. (??) is said to be a repeller if
there exists � > 0, such that for all x0 with 0 < ∣x0 − x̄∣ < �, there
exists an integer N ≥ 1 such that

∣xN − x̄∣ ≥ �.

(vii) The equilibrium point x̄ of Eq. (??) is called (locally) semistable
from the right (left) if for every � > 0 there exists � > 0 such that

0 < x0 − x̄ < � (−� < x0 − x̄ < 0) implies ∣xn − x̄∣ < � for n ≥ 0.

(viii) The equilibrium point x̄ of Eq. (??) is called (locally) asymp-
totically semistable from the right (left) if it is (locally) semistable
from the right (left) and there exists  such that

0 ≤ x0 − x̄ <  (− < x0 − x̄ ≤ 0) implies lim
n→∞

∣xn − x̄∣ = 0.

We have the following result:

Theorem 2.3. Let x̄ be an equilibrium of the difference equation (??)
where f is a continuously differentiable function at x̄.
(i) If

∣f ′(x̄)∣ < 1

then the equilibrium x̄ is locally asymptotically stable.
(ii) If

∣f ′(x̄)∣ > 1

then the equilibrium x̄ is unstable.

Theorem 2.4. Let x̄ be an equilibrium of the difference equation (??)
where f ′, f ′′, f ′′′ are continuous at x̄ such that f ′(x̄) = 1.
(i) If

f ′′(x̄) ∕= 0

then the equilibrium x̄ is semistable. More precisley, if f ′′(x̄) > 0, x̄
is semistable from the left and if f ′′(x̄) < 0, x̄ is semistable from the
right.
(ii) If

f ′′(x̄) = 0 and f ′′′(x̄) > 0

then the equilibrium x̄ is unstable.
(iii) If

f ′′(x̄) = 0 and f ′′′(x̄) < 0

then the equilibrium x̄ is (locally) asymptotically stable.
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Theorem 2.5. Let x̄ be an equilibrium of the difference equation (??)
where f ′, f ′′, f ′′′ are continuous at x̄ such that f ′(x̄) = −1. Let Sf be a
Schwarzian derivative of f , defined by

Sf(x) =
f ′′′(x)

f ′(x)
− 3

2

[
f ′′(x)

f ′(x)

]2

(i) If

Sf(x̄) > 0

then the equilibrium x̄ is unstable.
(ii) If

Sf(x̄) < 0

then the equilibrium x̄ is (locally) asymptotically stable.

3. Case � > 1

In this section we examine the existence and stability of equilibria of
the equation (??) in the case � > 1. First, let us consider the function
f defined by

(3.1) f(x) = x�er−x

for x ≥ 0, and � > 1, r > 0. The follwing three graphs represent the
function f in the case � = 2 for different values of r. Note that in all
three cases 0 is always one of the equilibria. Equillibria are intersections
of the graph of function f and the line y = x (dashed line). In the case
� = 2, r = 1.5 we see that there are two positive equilibria. In the
case � = 2, r = 1 there is only one positive equilibrium. In the case
� = 2, r = 0.5 there are no positive equilibria, only a unique equilibrium
0. These three cases are typical for this model.

Two positive equilibria

One positive equilibrium

No positive equilbria.

Theorem 3.1. Consider the difference equation (??) where � > 1, r >
0. The following statements are true:

(a) If r < (�−1)(1− ln(�−1)) the equation (??) has one equilibrium
0.

(b) If r = (� − 1)(1− ln(� − 1)) the equation (??) has two equilibria
0 and one positive equilibruim x̄ = � − 1.
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(c) If r > (�− 1)(1− ln(�− 1)) the equation (??) has three equilibria
0 and two positive equilibria x̄ and x̃, such that 0 < x̃ < � − 1 < x̄.

Proof. To prove this, we need to look at the equation x�er−x = x.

x = x�er−x

x = 0 is always a solution, so for x > 0 we have:

1 = x�−1er−x

0 = 1− x�−1er−x

Now, let

f(x) = x�er−x

and

(3.2) g(x) = 1− x�−1er−x

The zeroes of g(x) are the same as the fixed points of f(x).

g′(x) = x�−2er−x(x− (� − 1))

g′(x) = 0 if x = � − 1

Since g′′(�−1) = (�−1)�−2er−(�−1) > 0 for � > 1, �−1 is a minimum of
g. For x ∈ (0, �−1), x− (�−1) < 0, so g(x) is decreasing on (0, �−1).
Similarly, x − (� − 1) > 0 for x ∈ (� − 1,∞), so g(x) is increasing
on (� − 1,∞). Thus, � − 1 is the global minimum of g. Observe that
g(0) = 1 and lim

x→∞
g(x) = 1. If g(�− 1) > 0 then g(x) > 0 for all values

of x, so g has no zeroes. This is true when

1− (� − 1)�−1er−(�−1) > 0

1 > (� − 1)�−1er−(�−1)

(� − 1)−(�−1) > er−(�−1)

−(� − 1) ln(� − 1) > r − (� − 1)

r < (� − 1)(1− ln(� − 1))

so when r < (� − 1)(1− ln(� − 1)), g(x) > 0 for all x and the proof of
part (a) is complete.

A similar argument shows g(�−1) ≤ 0 when r ≥ (�−1)(1−ln(�−1)),
with equality when r = (�−1)(1−ln(�−1)). Thus, when r = (�−1)(1−
ln(� − 1)), f(x) has exactly one nonzero equilibrium (at x̄ = � − 1)),
when r > (�−1)(1−ln(�−1)) f(x) has two nonzero equilibria, x̃ < �−1,
and when r < (� − 1)(1− ln(� − 1)).

□
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It turns out that when � = 2, (�−1)(1− ln(�−1)) = 1, so in the case
� = 2, if r < 1, f(x) has no positive equilibria, if r = 1 f(x) has one
positive equilibrium, and for r > 1 there are two positive equilibria.

Next we will examine the stability of equilibria.

After describing the equilibria of f(x), the next step is to tell when
those equilibria are locally asymptotically stable. From the graph, it
seems that 0 and x̄ are attracting, and x̃ is repelling.

Theorem 3.2. Consider the difference equation (??) where � > 1, r >
0. Then the equilibrium at 0 is locally asymptotically stable.

Proof. As a direct result of Theorem ??. Since f ′(x) = x�−1er−x(�−x)
we have ∣f ′(0)∣ = 0 < 1 so 0 is locally asymptotically stable. □

Theorem 3.3. Consider the difference equation (??) where � > 1 and
r = (� − 1)(1 − ln(� − 1)). Then the positive equilibrium x̄ = � − 1 is
semistable from the right.

Proof. Since f ′(x̄) = 1 and

f ′′(x̄) = f ′′(� − 1)

= (� − 1)�−2e((�−1)−(�−1) ln(�−1))−(�−1)((� − 1)2 − �(� − 1))

= (� − 1)�−2e−(�−1) ln(�−1)((� − 1)2 − �(� − 1))

= (� − 1)�−2(� − 1)−(�−1)((� − 1)2 − �(� − 1))

= (� − 1)(�−2)−(�−1)((� − 1)2 − �(� − 1))

= (� − 1)−1((� − 1)2 − �(� − 1))

= (� − 1− �)
= −1 < 0,

x̄ = � − 1 is semistable from the right by Theorem ??. □

Theorem 3.4. Consider the difference equation (??) where � > 1 and

(� − 1)(1− ln(� − 1)) < r ≤ (� + 1)− (� − 1) ln(� + 1).

Then the positive equilibrium x̄ > � − 1 is LAS.

Proof. x̄ is LAS if ∣f ′(x̄)∣ < 1 by Theorem ??. Since x̄ is an equilibrium
of f(x), x̄ is LAS if ∣�− x̄∣ < 1. This is equivalent to �− 1 < x̄ < �+ 1.
Since x̄ > �−1, we must show when x̄ < �+1. As g(x) = 1−x�−1er−x is
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increasing on (�−1,∞), x̄ < �+ 1 is equivalent to g(x̄) = 0 < g(�+ 1).

0 < g(� + 1)

0 < 1− (� + 1)�−1er−(�+1)

(� + 1)�−1er−(�+1) < 1

er−(�+1) < (� + 1)−(�−1)

r − (� + 1) < −(� − 1) ln(� + 1)

r < (� + 1)− (� − 1) ln(� + 1)

It was proved in Theorem ?? that the difference equation (??) has
equilibria x̄ > � − 1 if and only if r > (� − 1)(1 − ln(� − 1)), so for
(� − 1)(1− ln(� − 1)) < r < (� + 1)− (� − 1) ln(� + 1), x̄ is LAS.

A similar argument shows that if x̄ = � + 1, then r = (� + 1)− (� −
1) ln(�+ 1) and ∣f ′(x̄)∣ = ∣−1∣ ∕< 1. However, by Theorem ?? x̄ is LAS
if Sf(x̄) < 0.

Sf(x̄) = Sf(� + 1) =
−3� + 1

2(� + 1)
< 0

since � > 1 □

Theorem 3.5. Consider the difference equation (??) where � > 1 and

r > (� − 1)(1− ln(� − 1)).

Then the positive equilibrium x̃ < � − 1 is unstable.

Proof. Since f ′(x̃) = x̃�−1er−x̃(�− x̃) and x̃�−1er−x̃ = 1 we have f ′(x̃) =
� − x̃ > 1 and x̃ is unstable. □

Next we study the attractivity of the equilibria. The following two
technical lemmas will be useful.

Lemma 3.6. f(x) = x�er−x is increasing on (0, �) and decreasing on
(�,∞)

Proof.

f ′(x) = �x�−1er−x − x�er−x

= x�−1er−x(� − x)

For x ∈ (0, �), f ′(x) > 0 since x�−1er−x > 0 for all x > 0, and �−x > 0
since x < �. For x ∈ (�,∞), f ′(x) < 0 since x�−1er−x > 0 for all x > 0,
and � − x < 0 since x > �. Thus, f(x) is increasing on (0, �) and
decreasing on (�,∞) □

Lemma ?? is very helpful because, if a, b ∈ (0, �), a < b is equivalent
to f(a) < f(b). Similarly, for a, b ∈ (�,∞) a < b if and only if f(a) >
f(b).
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Lemma 3.7. Consider the difference equation (??) where � > 1 and
r > (� − 1)(1 − ln(� − 1)). Let x̃, x̄ (x̃ < � − 1 < x̄) be two positive
equilibria of the same equation. Then there exists x̂ ∕= x̃, such that
f(x̂) = x̃.

Proof. f(x) = x�er−x has a maximum at x = � with f(�) > x̃, is de-
creasing on (�,∞) by Lemma ??, and lim

x→∞
f(x) = 0, so by the Interme-

diate Value Theorem there exists some x̂ in (�,∞) with f(x̂) = x̃. □

Theorem 3.8. Consider the difference equation (??) where � > 1 and
r > (� − 1)(1 − ln(� − 1)). Let x̃, x̄ (x̃ < � − 1 < x̄) be two positive
equilibria of the same equation, and x̂ ∕= x̃, satisfies f(x̂) = x̃. Then
the basin of attraction of the equilibrium at 0 is the set [0, x̃) ∪ (x̂,∞).

Proof. Let x0 ∈ [0, x̃). First we prove by induction that {xn} is con-
tained within [0, x̃). The case n = 0 is true, since it is given that
x0 ∈ [0, x̃). Assume it is true for n = k, that is, 0 ≤ xk < x̃. Since
f(x) is increasing on (0, �) by Lemma ??, and f(0) = 0, f(xk) = xk+1,
f(x̃) = x̃ we have 0 ≤ xk+1 < x̃, proving that {xn} ∈ [0, x̃) for all
integers n. Now, using the observation that f(x) < x on (0, x̃), we
have xn+1 = f(xn) < xn, and {xn} is decreasing.

Since {xn} is both bounded and decreasing, it converges. Therefore,

lim
n→∞

xn = x ∈ [0, x̃),

and

lim
n→∞

xn+1 = lim
n→∞

x�ne
r−xn

x = x�er−x

Since the only solution to x = x�er−x in [0, x̃) is x = 0, {xn} converges
to 0 if x0 ∈ [0, x̃).

For x̂ < x0 < ∞, and since f(x) is decreasing on (x̂,∞), we have
lim
x→∞

f(x) = 0 < f(x0) < f(x̂) = x̃. This is simply have 0 < x1 < x̃

which was previously shown to converge to 0. □

Theorem 3.9. Consider the difference equation (??) where � > 1 and

(� − 1)(1− ln(� − 1)) < r ≤ � − (� − 1) ln(�).

Let x̃, x̄ (x̃ < �−1 < x̄) be two positive equilibria of the same equation,
and x̂ ∕= x̃, satisfies f(x̂) = x̃. Then the basin of attraction of the
positive equilibrium x̄ is the interval (x̃, x̂).

Proof. First we will show that the condition r ≤ � − (� − 1) ln(�) is
equivalent to x̄ ≤ �. Following the same arguments as in the proof of

8



Theorem 2.3 the condition x̄ ≤ � is equivalent to 0 = g(x̄) ≤ g(�),
where g(x) = 1− x�−1er−x. So we obtain

1− ��−1er−� ≥ 0

which is equivalent to r ≤ � − (� − 1) ln(�).
The following cases are possible:
Case 1: x̃ < x0 ≤ x̄. First we show that {xn} converges to x̄ if

x0 ∈ (x̃, x̄]. The argument is very similar to the proof of Theorem ??.
Let x0 ∈ (x̃, x̄]. We prove, by induction, that {xn} is contained within
(x̃, x̄]. The case n = 0 is true, since it is given that x0 ∈ (x̃, x̄]. Assume
the case n = k for some positive integer k is true, x̃ < xk ≤ x̄. Since
f(x) is increasing on (0, �) by Lemma ??, f(x̃) < f(xk) ≤ f(x̄), but,
f(x̃) = x̃, f(xk) = xk+1, and f(x̄) = x̄ so using the assumption that
x̃ < xk ≤ x̄ we have x̃ < xk+1 ≤ x̄, proving that {xn} ∈ (x̃, x̄] for
all integers n. Now, using the observation that f(x) > x on (x̃, x̄], we
have xn+1 = f(xn) > xn, and {xn} is increasing. Since {xn} is both
bounded and increasing, it converges. Therefore,

lim
n→∞

xn = x ∈ (x̃, x̄],

and

lim
n→∞

xn+1 = lim
n→∞

x�ne
r−xn

x = x�er−x

Since the only solution to x = x�er−x in (x̃, x̄] is x = x̄, {xn} converges
to x̄ if x0 ∈ (x̃, x̄].

Case 2. x̄ < x0 ≤ �. The proof is similar to the previous one and is
omitted.

Case 3. � < x0 ≤ x★ with f(x★) = x̄.

� < x0 ≤ x★

f(�) > f(x0) ≥ f(x★)

� > f(�) > x1 ≥ x̄

and this becomes case 2.
Case 4. x★ < x0 < x̂.

x★ < x0 < x̂

f(x★) > f(x0) > f(x̂)

x̃ < x1 < x̄

so we obtain case 1. □
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4. Case 0 < � ≤ 1

Theorem 4.1. Consider the difference equation (??) where 0 < � ≤
1, r > 0. The equation has two equilibria, 0 and a positive equilibrium
x̄.

Proof.

x = f(x)

x = x�er−x

0 = x− x�er−x

0 = x(1− x�er−x)

So the solutions to f(x) = x are x = 0 and the solutions to 1 −
x�−1er−x = 0

Since x ∕= 0

0 = 1− x�−1er−x

0 = x1−� − er−x

Now let ℎ(x) = x1−� − er−x. ℎ(0) = −er < 0 and lim
x→∞

ℎ(x) = ∞. By

the Intermediate Value Theorem, since ℎ(x) is a real valued, continuous
function, ℎ(x) must pass through the line x = 0 on the interval (0,∞)
at least once. So Equation (??) has at least one positive equilibrium.
Observe that ℎ′(x) = (1− �)x−� + er−x. Since 0 < � < 1, ℎ′(x) > 0 for
all x ∈ (0,∞) and ℎ(x) is strictly increasing on (0,∞). Thus (??) has
exactly one positive equilibrium x̄ ∈ (0,∞). □

Theorem 4.2. Consider the difference equation (??) where

0 < � ≤ 1, r > 0.

The following statements are true:
(a) 0 equilibrium is unstable.
(b) If r < (�+ 1)− (�− 1) ln(�+ 1)), then the positive equilibrium x̄

is locally asymptotically stable.

Proof. Part (a): By Theorem ??, if ∣f ′(0)∣ > 1 then x = 0 is unstable.

(4.1) f ′(x) = x�−1er−x(� − x)

For 0 < � < 1, f ′(0) is undefined, since x�−1 = 1/x1−�. However,
lim
x→0+

∣f ′(x)∣ =∞ > 1 so the 0 equilibrium is unstable.

When � = 1, f ′(0) = er > 1 since r > 0 so the 0 equilibrium is again
unstable.
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Part (b): By Theorem ??, if ∣f ′(x̄)∣ < 1 then x̄ is LAS. Since f ′(x̄) =
x̄�−1er−x̄(� − x̄). and ℎ(x̄) = 0, f ′(x̄) = � − x̄.

∣f ′(x̄)∣ < 1

−1 < � − x̄ < 1

� − 1 < x̄ < � + 1

As x̄ ∈ (0,∞), x̄ > � − 1, so when x̄ < � + 1, x̄ is LAS. Since ℎ(x)
is strictly increasing on (0,∞), x̄ < � + 1 is equivalent to ℎ(x̄) = 0 <
ℎ(� + 1).

ℎ(� + 1) > 0

(� + 1)1−� − er−(�+1) > 0

er−(�+1) < (� + 1)1−�

r − (� + 1) < ln(� + 1)1−�

r < (� + 1) + (1− �)ln(� + 1)

So when r < (� + 1) + (1− �)ln(� + 1), x̄ is LAS. □

Theorem 4.3. Consider the difference equation (??) where � ≥ 1 and
r ≤ (�) + (1− �)ln(�). Then the basin of attraction for x̄ is (0,∞).

Proof. This proof is very similar to the proof for Theorem ?? and is
omitted. □

5. conclusion

The limiting factor in our understanding of the Generalized Ricker’s
Population Model is the basin of attraction for (�) − (� − 1) ln(�) <
r < (� + 1)− (� − 1) ln(� + 1). We were unable to prove this case, but
a computer model

shows that the following conjecture is true.

Conjecture 5.1. Consider the difference equation (??) where � > 0
and

(�)− (� − 1) ln(�) < r < (� + 1)− (� − 1) ln(� + 1).

Then the basins of attraction for the positive LAS equilibrium x̄ are
the same as the basins of attraction specified in Theorems ?? and ??

5.1. Extrapolation. The Ricker’s population model, discovered in
fishery science, is used for numerous fields, especially in the biolog-
ical sciences. One such application this model can be used in is a
certain disaster that is occuring right now close to home, the British
Petroleum Oil leak. By applying Ricker’s model, we can make a rough
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approximation on how the ecosystems will be affected by the disaster.
To do this we need to consider the non autonomous generalized Ricker’s
Model:

xn+1 = x�ne
rn−xn

where {rn} is a given positive sequence. This reflects the case where
the environment changes, that is, the carrying capacity is not constant.
Since the oil leak on April 20, 2010, the oil that has leaked from the
broken well has killed much of the microorganisms that thrive on oxy-
gen and sunlight. When the microorganisms can’t receive their oxygen
because of the oil, they are starved and die off. When the microor-
ganisms die off, it creates a disruption in the food chain. The larger
organisms that thrive off the smaller ones can’t eat and die off, thus
creating a ”domino effect”. According to the definition of the carrying
capacity, once the food is gone, the remaining species of the ecosystem
have no choice but to either die off, or migrate to another location in
order to survive.

We are able to observe that this conjecture is true with the help of
a computer, but are unable to prove it at this time.
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