The Gamma Function

N. Cannady, T. Ngo, A. Williamson
Louisiana State University SMILE REU

July 9, 2010

Motivation and History

The Gamma Function
N. Cannady, T. Ngo, A. Williamson

Introduction

Motivation and History Definition
Related Functions
Behavior

- Developed as the unique extension of the factorial to non-integral values.

Area Under the Curve
Critical Points
The Bluntness of The Gamma Function

Conclusion
Bibliography

Motivation and History

The Gamma Function
N. Cannady, T. Ngo, A. Williamson

Introduction

Motivation and History
Definition
Related Functions
Behavior

- Developed as the unique extension of the factorial to non-integral values.
- Many applications in physics, differential equations, statistics, and analytic number theory.

Motivation and History

The Gamma Function
N. Cannady, T. Ngo, A. Williamson

Introduction
Motivation and History
Definition
Related Functions
Behavior

- Developed as the unique extension of the factorial to non-integral values.
- Many applications in physics, differential equations, statistics, and analytic number theory.
- "Each generation has found something of interest to say about the gamma function. Perhaps the next generation will also."
-Philip J. Davis

Area Under the Curve
Critical Points
The Bluntness of The
Gamma Function
Conclusion
Bibliography

Definition

The Gamma Function
N. Cannady, T. Ngo, A. Williamson

Introduction

Motivation and History Definition
Related Functions
Behavior
Area Under the Curve
Critical Points
The Bluntness of The
Gamma Function
Conclusion
Bibliography

Definition

The Gamma function is an extension of the factorial (with the argument shifted down) to the complex plane. The basic integral definition is

$$
\Gamma(s)=\int_{0}^{\infty} x^{s-1} e^{-x} d x
$$

For the positive integers,

$$
\Gamma(s)=(s-1)!.
$$

Definition

The Gamma function is an extension of the factorial (with the argument shifted down) to the complex plane. The basic integral definition is

$$
\Gamma(s)=\int_{0}^{\infty} x^{s-1} e^{-x} d x
$$

For the positive integers,

$$
\Gamma(s)=(s-1)!.
$$

The Gamma function is analytic for all complex numbers except the non-positive integers. The function has simple poles at these values, with residues given by $\frac{(-1)^{s}}{s!}$.

Alternate Definitions and Functional Equations

The Gamma Function
N. Cannady, T. Ngo, A. Williamson

Introduction

Motivation and History Definition
Related Functions
Behavior
A few of the most useful ones:

1. $\Gamma(s)=\lim _{n \rightarrow \infty} \frac{n^{s} n!}{s(s+1) \ldots(s+n)}$ for $s \neq 0,-1,-2, \ldots$
2. $\frac{1}{\Gamma(s)}=s e^{\gamma s} \prod_{n=1}^{\infty}\left(1+\frac{s}{n}\right) e^{-s / n} \forall s$.
3. $\Gamma(s+1)=s \Gamma(s)$.
4. $\Gamma(s) \Gamma(1-s)=\frac{\pi}{\sin \pi s}$.

The Digamma and Polygamma Functions

The Gamma Function
N. Cannady, T. Ngo, A. Williamson

- The Digamma function, $\Psi^{(0)}(x)$ is defined as the derivative of the logarithm of $\Gamma(x)$.

$$
\psi^{(0)}(x)=\frac{d}{d x}(\log \Gamma(x))=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}
$$

Introduction

Motivation and History
Definition
Related Functions
Behavior
Area Under the Curve
Critical Points
The Bluntness of The Gamma Function

The Digamma and Polygamma Functions

Introduction

Motivation and History
Definition
Related Functions
Behavior derivative of the logarithm of $\Gamma(x)$.

$$
\Psi^{(0)}(x)=\frac{d}{d x}(\log \Gamma(x))=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}
$$

- The Polygamma function, $\Psi^{(k)}(x)$ is the generalization to higher derivatives.

$$
\Psi^{(k)}(x)=\frac{d^{k+1}}{d x^{k+1}}(\log \Gamma(x))
$$

The Euler Gamma

The Gamma Function
N. Cannady, T. Ngo, A. Williamson

Introduction

Motivation and History
Definition
Related Functions
Behavior
Area Under the Curve

- The Euler Gamma arises often when discussing the Gamma function.

Critical Points
The Bluntness of The
Gamma Function
Conclusion
Bibliography

The Euler Gamma

The Gamma Function
N. Cannady, T. Ngo, A. Williamson

Introduction

Motivation and History
Definition
Related Functions
Behavior
Area Under the Curve

- The Euler Gamma arises often when discussing the Gamma function.
- $\gamma=\lim _{r \rightarrow \infty}\left(\log r-1-\frac{1}{2}-\frac{1}{3}-\ldots-\frac{1}{r}\right)$

Critical Points
The Bluntness of The Gamma Function

Conclusion

Bibliography

The Euler Gamma

The Gamma Function
N. Cannady, T. Ngo, A. Williamson

Introduction

Motivation and History
Definition
Related Functions
Behavior

- The Euler Gamma arises often when discussing the Gamma function.
- $\gamma=\lim _{r \rightarrow \infty}\left(\log r-1-\frac{1}{2}-\frac{1}{3}-\ldots-\frac{1}{r}\right)$
- It is unknown whether γ is algebraic or transcendental.

Graph of the Gamma Function

The Gamma Function
N. Cannady, T. Ngo, A. Williamson

Gamma function

Introduction

Motivation and History
Definition
Related Functions
Behavior
Area Under the Curve
Critical Points
The Bluntness of The
Gamma Function

Conclusion

Bibliography

Overview of Behavior

The Gamma Function
N. Cannady, T. Ngo, A. Williamson
We looked at several features of the graph:

Introduction

Motivation and History
Definition
Related Functions
Behavior
Area Under the Curve
Critical Points
The Bluntness of The Gamma Function

Conclusion

Bibliography

Overview of Behavior

The Gamma Function
N. Cannady, T. Ngo, A. Williamson
We looked at several features of the graph:

Introduction

Motivation and History
Definition
Related Functions
Behavior
Area Under the Curve
Critical Points
The Bluntness of The
Gamma Function

Conclusion

Bibliography

- The area under the curve.

Overview of Behavior

The Gamma Function
N. Cannady, T. Ngo, A. Williamson
We looked at several features of the graph:

Introduction

Motivation and History
Definition
Related Functions
Behavior
Area Under the Curve
Critical Points
The Bluntness of The
Gamma Function
Conclusion
Bibliography

- The area under the curve.
- Critical points of the graph for negative values shift progressively leftwards.

Overview of Behavior

We looked at several features of the graph:

Introduction

Motivation and History
Definition
Related Functions
Behavior
Area Under the Curve
Critical Points
The Bluntness of The
Gamma Function
Conclusion
Bibliography

- The area under the curve.
- Critical points of the graph for negative values shift progressively leftwards.
- The graph restricted to intervals between the discontinuities looks like a squeezed segment of the graph in the positive regime.

Overview of Behavior

We looked at several features of the graph:

Introduction

Motivation and History
Definition
Related Functions
Behavior
Area Under the Curve
Critical Points
The Bluntness of The
Gamma Function
Conclusion
Bibliography

- The area under the curve.
- Critical points of the graph for negative values shift progressively leftwards.
- The graph restricted to intervals between the discontinuities looks like a squeezed segment of the graph in the positive regime.
- Critical points for negative values approach zero.

Questions About the Integral of $\Gamma(x)$

The Gamma Function
N. Cannady, T. Ngo, A. Williamson
When considering the graph of the Gamma Function, one might be lead to consider several things.

Questions About the Integral of $\Gamma(x)$

The Gamma Function
N. Cannady, T. Ngo, A. Williamson
When considering the graph of the Gamma Function, one might be lead to consider several things.

Definition
Related Functions
Behavior
Area Under the Curve
Critical Points
The Bluntness of The
Gamma Function
Conclusion
Bibliography

- Does the integral of $\Gamma(x)$ converge if one of the bounds of integration is a point of discontinuity?

Questions About the Integral of $\Gamma(x)$

The Gamma Function
N. Cannady, T. Ngo, A. Williamson
When considering the graph of the Gamma Function, one might be lead to consider several things.

Definition
Related Functions
Behavior
Area Under the Curve
Critical Points
The Bluntness of The
Gamma Function
Conclusion
Bibliography

- Does the integral of $\Gamma(x)$ converge if one of the bounds of integration is a point of discontinuity?
- Does the integral of $\Gamma(x)$ converge if we integrate over a point of discontinuity?

Questions About the Integral of $\Gamma(x)$

When considering the graph of the Gamma Function, one might be lead to consider several things.

- Does the integral of $\Gamma(x)$ converge if one of the bounds of integration is a point of discontinuity?
- Does the integral of $\Gamma(x)$ converge if we integrate over a point of discontinuity?
- Does the integral of $\Gamma(x)$ from $-\infty$ to any real number converge?

Behavior Near the Points of Discontinuity

The Gamma Function

In order to fully understand $\int_{a}^{b} \Gamma(x)$ we must first understand the behaviour of $\Gamma(x)$ near its points of discontinuity.
N. Cannady, T. Ngo, A.
N. Cannady, T. Ngo, A.
Williamson

Introduction
Motivation and History
Definition
Related Functions
Behavior
Area Under the Curve
Critical Points
The Bluntness of The
Gamma Function
Conclusion
Bibliography

Behavior Near the Points of Discontinuity

The Gamma Function
N. Cannady, T. Ngo, A.

In order to fully understand $\int_{a}^{b} \Gamma(x)$ we must first understand the behaviour of $\Gamma(x)$ near its points of discontinuity.

$$
\Gamma(x)=\frac{\Gamma(x+1)}{x}
$$

Since $\Gamma(1)=1$, if x is very small, then...

Williamson

Introduction
Motivation and History
Definition
Related Functions Behavior

Area Under the Curve

Critical Points

The Bluntness of The Gamma Function

Conclusion
Bibliography

Behavior Near the Points of Discontinuity

The Gamma Function
N. Cannady, T. Ngo, A. Williamson
In order to fully understand $\int_{a}^{b} \Gamma(x)$ we must first understand the behaviour of $\Gamma(x)$ near its points of discontinuity.

$$
\Gamma(x)=\frac{\Gamma(x+1)}{x}
$$

Since $\Gamma(1)=1$, if x is very small, then...

$$
\Gamma(x-k) \approx \frac{1}{x(k!)}
$$

Integrals Near Points of Discontinuity

The Gamma Function
N. Cannady, T. Ngo, A. Williamson

Introduction
Motivation and History
Definition
Related Functions
Behavior
Because we have these relations in very small neighborhoods of the discontinuous points, there are several things we can conclude.

Integrals Near Points of Discontinuity

The Gamma Function
N. Cannady, T. Ngo, A. Williamson

Introduction
Motivation and History
Definition
Related Functions
Behavior
Because we have these relations in very small neighborhoods of the discontinuous points, there are several things we can conclude.
$>\int_{-\epsilon}^{\epsilon} \Gamma(x-k) d x \approx \frac{1}{k!} \int_{-\epsilon}^{\epsilon} \frac{d x}{x} \rightarrow 0$

Integrals Near Points of Discontinuity

The Gamma Function
N. Cannady, T. Ngo, A. Williamson

Introduction
Motivation and History
Definition
Related Functions
Behavior
Because we have these relations in very small neighborhoods of the discontinuous points, there are several things we can conclude.

- $\int_{-\epsilon}^{\epsilon} \Gamma(x-k) d x \approx \frac{1}{k!} \int_{-\epsilon}^{\epsilon} \frac{d x}{x} \rightarrow 0$
- $\int_{0}^{\epsilon} \Gamma(x-k) d x \approx \frac{1}{k!} \int_{0}^{\epsilon} \frac{d x}{x} \rightarrow \pm \infty$

Integrals Near Points of Discontinuity

The Gamma Function
N. Cannady, T. Ngo, A. Williamson

Introduction
Motivation and History
Definition
Related Functions
Behavior
Because we have these relations in very small neighborhoods of the discontinuous points, there are several things we can conclude.

- $\int_{-\epsilon}^{\epsilon} \Gamma(x-k) d x \approx \frac{1}{k!} \int_{-\epsilon}^{\epsilon} \frac{d x}{x} \rightarrow 0$
- $\int_{0}^{\epsilon} \Gamma(x-k) d x \approx \frac{1}{k!} \int_{0}^{\epsilon} \frac{d x}{x} \rightarrow \pm \infty$
- $\left|\int_{a}^{b} \Gamma(x) d x\right|<\infty$ for all a,b that are neither negative integers nor 0 .

Critical Points
The Bluntness of The
Gamma Function
Conclusion
Bibliography

Convergence of the Integral in the Limit

The Gamma Function
N. Cannady, T. Ngo, A. Williamson

What about $\int_{-\infty}^{b} \Gamma(x) d x$?

Introduction

Motivation and History Definition
Related Functions
Behavior
Area Under the Curve
Critical Points
The Bluntness of The Gamma Function

Conclusion
Bibliography

Convergence of the Integral in the Limit

The Gamma Function
N. Cannady, T. Ngo, A. Williamson

What about $\int_{-\infty}^{b} \Gamma(x) d x$?

$$
\int_{-\infty}^{1 / 2} \Gamma(x) d x=\sum_{k=0}^{\infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} \Gamma(x-k) d x
$$

Introduction

Motivation and History
Definition
Related Functions
Behavior
Area Under the Curve

Critical Points

The Bluntness of The Gamma Function

Conclusion

Bibliography

Convergence of the Integral in the Limit

What about $\int_{-\infty}^{b} \Gamma(x) d x$?

$$
\int_{-\infty}^{1 / 2} \Gamma(x) d x=\sum_{k=0}^{\infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} \Gamma(x-k) d x
$$

Recalling our reccurence relation $\Gamma(x)=\frac{\Gamma(x+1)}{x}$ for $x \in\left(-\frac{3}{2},-\frac{1}{2}\right)$ we can conclude that...

The Gamma Function
 N. Cannady, T. Ngo, A. Williamson

Introduction

Motivation and History
Definition
Related Functions
Behavior
Area Under the Curve

Critical Points

The Bluntness of The Gamma Function

Conclusion

Bibliography

Convergence of the Integral in the Limit

The Gamma Function
N. Cannady, T. Ngo, A. Williamson

What about $\int_{-\infty}^{b} \Gamma(x) d x$?

$$
\int_{-\infty}^{1 / 2} \Gamma(x) d x=\sum_{k=0}^{\infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} \Gamma(x-k) d x
$$

Recalling our reccurence relation $\Gamma(x)=\frac{\Gamma(x+1)}{x}$ for $x \in\left(-\frac{3}{2},-\frac{1}{2}\right)$ we can conclude that...

$$
|\Gamma(x-k)| \leq \frac{2^{k}}{(2 k-1)!!}|\Gamma(x)|
$$

Convergence of the Integral in the Limit

The Gamma Function
N. Cannady, T. Ngo, A. Williamson

What about $\int_{-\infty}^{b} \Gamma(x) d x$?

$$
\int_{-\infty}^{1 / 2} \Gamma(x) d x=\sum_{k=0}^{\infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} \Gamma(x-k) d x
$$

Introduction

Motivation and History
Definition
Related Functions
Behavior
Area Under the Curve
Critical Points
The Bluntness of The
Recalling our reccurence relation $\Gamma(x)=\frac{\Gamma(x+1)}{x}$ for $x \in\left(-\frac{3}{2},-\frac{1}{2}\right)$ we can conclude that...

$$
\begin{aligned}
|\Gamma(x-k)| & \leq \frac{2^{k}}{(2 k-1)!!}|\Gamma(x)| \\
\Rightarrow \sum_{k=0}^{\infty}\left|\int_{-\frac{1}{2}}^{\frac{1}{2}} \Gamma(x-k) d x\right| & \leq\left|\int_{-\frac{1}{2}}^{\frac{1}{2}} \Gamma(x-k) d x\right| \sum_{k=0}^{\infty} \frac{2^{k}}{(2 k-1)!!}
\end{aligned}
$$

Critical Points

The Gamma Function
N. Cannady, T. Ngo, A. Williamson

On the $n^{\text {th }}$ interval $(-n,-n+1)$, let x^{*} be the x-coordinate of the critical point of the gamma function on this interval.
Let:

$$
\begin{gathered}
x_{n}=x^{*}+n \text { for } 0<x_{n}<1 \\
\Psi(x)=\sum_{k=1}^{n} \frac{1}{x-k}
\end{gathered}
$$

Introduction

Motivation and History
Definition
Related Functions
Behavior
Area Under the Curve
Critical Points
The Bluntness of The
Gamma Function
Conclusion
Bibliography

Claim: x_{n} is unique

$$
\lim _{n \rightarrow \infty} x_{n} \log n=1
$$

Value of the Gamma Function at Critical Points

Let d_{n} denote the value of the gamma function at its critical point on the $n^{\text {th }}$ interval $(-n,-n+1)$. We have:

$$
\left|d_{n}\right|=\left|\frac{\Gamma\left(x_{n}\right)}{\prod_{k=1}^{n}\left(x_{n}-k\right)}\right|
$$

Introduction
Motivation and History
Definition
Related Functions
Behavior
Area Under the Curve
Critical Points
The Bluntness of The
Gamma Function

$$
B=\left|\frac{\prod_{k=1}^{n}\left(x_{n}-k\right)}{n!}\right|
$$

Conclusion
Bibliography

Since $\lim _{n \rightarrow \infty} x_{n} \log n=1$, we have :

$$
\lim _{n \rightarrow \infty} B=\frac{1}{e}
$$

Using this gives us:

$$
\lim _{n \rightarrow \infty} \frac{n!\left|d_{n}\right|}{\log n}=e
$$

The Bluntness of The Gamma Function

The gamma function seems to flatten out when we move toward the negative side. To explain this, we will try to analyze the solution to the following equation:

$$
\Gamma^{\prime}(x)=\alpha
$$

where α is an arbitrary positive real number. On the $n^{\text {th }}$ interval, let the solution on this interval be: $x_{n}^{*}-n$. This means $0<x_{n}^{*}<1$ and:

$$
\Gamma^{\prime}\left(x_{n}^{*}-n\right)=\alpha
$$

The Bluntness of the Gamma Function

The Gamma Function
N. Cannady, T. Ngo, A. Williamson

Introduction

Motivation and History
Definition
Related Functions
Behavior
We start by proving the following limit for any real s, where $0<s<1$:

$$
\lim _{n \rightarrow \infty} \Gamma^{\prime}(s-n)=0
$$

Area Under the Curve
Critical Points
The Bluntness of The Gamma Function

Conclusion
Bibliography
This means:

$$
\lim _{n \rightarrow \infty} x_{n}^{*}=1
$$

The Bluntness of the Gamma Function

Next we will analyze how fast the sequence $\left\{x_{n}^{*}\right\}$ goes to 1 by analyzing how fast the sequence $\left\{y_{n}\right\}$ goes to zero, where $y_{n}=1-x_{n}^{*}$.

$$
\lim _{n \rightarrow \infty} y_{n}^{2}(n-1)!=\frac{1}{\alpha}
$$

Introduction

Motivation and History
Definition
Related Functions
Behavior
Area Under the Curve
Critical Points
The Bluntness of The Gamma Function

Conclusion
Bibliography
Now we can use this limit to go back and prove that when n is large enough, the sequence $\left\{x_{n}^{*}\right\}$ is strictly moving to the right.

Conclusion

N. Cannady, T. Ngo, A. Williamson

- The integral of the Gamma function from $-\infty$ to any finite, positive number converges.
- The critical points of the function on the negative real line migrate towards the asymptotes.
- The Gamma function flattens out as we move to more negative values.

Introduction

Motivation and History
Definition
Related Functions
Behavior
Area Under the Curve
Critical Points
The Bluntness of The
Gamma Function
Conclusion
Bibliography

Bibliography

The Gamma Function
N. Cannady, T. Ngo, A. Williamson

Introduction

Motivation and History
Definition
Related Functions
Behavior
Area Under the Curve
Critical Points
The Bluntness of The
Gamma Function

Conclusion

Bibliography

