
GAMMA FUNCTION

Abstract. In this paper we explore the history and properties
of the Gamma function in an analytic number theoretical context.
We analyze the behavior of the Gamma function at its critical
points and points of discontinuity, and discuss the convergence of
the integral.

1. Introduction

1.1. History and Motivation. In the early 16th century, Leonhard
Euler and others attempted to expand the domain of the factorial to
the real numbers. This cannot be done with elementary functions,
however, with the notions of limits and integrals from the calculus,
there were a few expressions developed. In 1738, Euler published the
following forms of the generalized factorial:

∙ n! =
∏∞

k=1
(1+1/k)n

1+n/k

∙ n! =
∫ 1

0
(− log s)nds for n > 0

For the time being, we will refer to these as the product and integral
definitions.

In the 19th century, Carl Friedrich Gauss rewrote Euler’s product
definition to extend the domain to the complex plane, rather than
simply the real numbers. This expression uses a limiting process on a
series of intermediate functions to represent the factorial.

Γr(x) =
r!rx

x(1 + x)(2 + x) . . . (r + x)

Γ(x) = lim
r→∞

Γr(x)

This was also the time period that the notation Γ(x) was applied to
the concept. It was named in 1811 by Adrien-Marie Legendre, who
also transformed the integral definition in a very simple way to extend
its domain:

n! =

∫ 1

0

(− log s)nds

Let t = − log s.

s = −et
1



dt = −1

s
ds = etds

Γ(n) =

∫ ∞
0

tn−1e−tdt,

which is the more common integral definition that we see today.

A few years later, Karl Weierstrass reworked Gauss’ expression in
the following manner:

Γr(x) =
ex log r

x(1 + x/1)(1 + x/2) . . . (1 + x/r)

ex log r = exex+x/2+x/3+...+x/r

Γr(x) = ex
1

x

ex

(1 + x/1)

ex/2

(1 + x/2)
. . .

ex/r

(1 + x/r)

1

Γ(x)
= lim

r→∞

1

Γr(x)
= xe−x

∞∏
r=1

(1 +
x

r
)e−x/r,

where  = limr→∞(log r−1− 1
2
− 1

3
−. . .− 1

r
) is Euler’s gamma constant.

This formulation is defined in terms of zeroes rather than poles.
This actually inspired Weierstrass to prove the Weierstrass Factoriza-
tion Theorem, which says that any entire function can be written as a
product of its zeroes over ℂ.

In 1922, Bohr and Mollerup confronted the issue of whether these
expressions of the gamma function were equivalent, and, relatedly,
whether the Gamma function as defined is unique. Their results are
summarized in the following theorem:

Theorem 1.1 (Bohr-Mollerup Theorem). If Γ1 = Γ2 on the integers
and Γ1(x) = Γ2(x) is logarithmically convex for Re(x) > 0, then Γ1 =
Γ2 ∀ x ∈ ℝ.

1.2. Log convexity. The previous theorem guarantees uniqueness for
the Gamma function if it is logarithmically convex. The following
theorem and its proof can be found in Emil Artin’s paper, The Gamma
Function.

Definition 1.2. f(x) is said to be logarithmically convex if the func-
tion log f(x) is convex.

Theorem 1.3. Let f(x) be a twice differentiable function. Then f(x)
is convex if and only if f ′′(x) ≥ 0 for all x in the domain.
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Now we will show that the Gamma function satisfies the above cri-
terion for log convexity.

Proposition 1.4. Γ(x) is logarithmically convex for all x > 0.

Proof:
d

dx
(log Γ(x)) =

Γ′(x)

Γ(x)

= −1

x
+  =

∞∑
r=1

(
1

r + x
− 1

r
)

d2

dx2
(log Γ(x)) =

1

x2
+
∞∑
i=1

1

(x+ i)2

It is clear that this expression is strictly positive, so the Gamma func-
tion is log convex. □

This establishes the uniqueness of the Gamma function as the ex-
tension of the factorial.

1.3. Properties. The Gamma function satisfies the following func-
tional equations:

∙ Γ(z + 1) = zΓ(z)
∙ Γ(1) = 1
∙ Γ(n) = (n− 1)! for n ∈ ℕ
∙ Γ(1− z)Γ(z) = �

sin�z

We express the derivatives of the Gamma function in terms of an-
other special function, the Polygamma function, Ψ(k).

Ψ(m)(z) = (−1)(m+1)

∫ ∞
0

tme−zt

1− e−t
dt

More important in our context is the following form:

Ψ(m)(z) = (
d

dz
)m+1(log Γ(z)).

The digamma is the first polygamma function, in the case m = 0.

Ψ(0)(z) =
Γ′(z)

Γ(z)

Γ′(z) = Ψ(0)(z)Γ(z)

This leads us to use the following expression for the derivatives of
gamma:

Γ(k)(z) =

∫ ∞
0

tz−1e−t(log t)ndt.
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The Gamma function is analytic for all values z ∈ ℂ except for the
non-positive integers. At these points the function has simple poles.

The residue for the point at n = 0,−1,−2, . . . is (−1)−n

(−n)!
.

2. Notation

Here is some notation that we will use later in this paper:

For x, s, and n real numbers, we define:

Ψ(x) :=
Γ′(x)

Γ(x)

E+(x) :=

(
1 +

1

x

)x
E−(x) :=

(
1− 1

x

)−x
H(s, n) :=

n∑
k=1

1

ks

�(s) :=
∞∑
k=1

1

ks

3. Properties

Here are some properties that we will use throughout this paper:

Proposition 3.1. For all real x with ∣x∣ > 1, we have:

log
x

x− 1
=
∞∑
k=1

1

kxk
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Proof. Because ∣x∣ > 1, we have 1
∣x∣ < 1. Therefore, we have the

following:

1

1− 1
x

=
∞∑
k=0

1

xk

1

x2
(
1− 1

x

) =
∞∑
k=2

1

xk

1

x(x− 1)
=

∞∑
k=2

1

xk

− 1

x(x− 1)
= −

∞∑
k=2

1

xk

1

x
− 1

x− 1
= −

∞∑
k=2

1

xk

Now integrating both sides gives us:∫ (
1

x
− 1

x− 1

)
dx = −

∫ ∞∑
k=2

1

xk
dx = −

∞∑
k=2

∫
1

xk
dx

log x− log(x− 1) =
∞∑
k=1

1

kxk

log
x

x− 1
=

∞∑
k=1

1

kxk

This proves our proposition. □

Proposition 3.2. For all real x the function E+(x) =
(
1 + 1

x

)x
is

increasing on the interval [1,∞).

Proof. We have:

E+(x) =

(
1 +

1

x

)x
logE+(x) = x log

(
1 +

1

x

)
(E+(x))

′

E+(x)
= log

(
1 +

1

x

)
+ x ⋅

− 1
x2

1 + 1
x

= log
x+ 1

x
− 1

x+ 1
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By proposition 3.1, we have:

(E+(x))
′

E+(x)
=

∞∑
k=1

1

k(x+ 1)k
− 1

x+ 1

=
∞∑
k=2

1

k(x+ 1)k
> 0

Our proof is done because we have proved that (E+(x))
′
> 0 for all

x ≥ 1. □

Using this proposition, we can establish the boundaries for E+(x)
on [1,∞):

2 ≤ E+(x) < lim
x→∞

E+(x) = e

Proposition 3.3. For all real x the function E−(x) =
(
1− 1

x

)−x
is

decreasing on the interval (1,∞).

Proof. We have:

E−(x) =

(
1− 1

x

)−x
logE−(x) = −x log

(
1− 1

x

)
(E−(x))

′

E−(x)
= − log

(
1− 1

x

)
− x ⋅

1
x2

1− 1
x

= − log
x− 1

x
− 1

x− 1

= log
x

x− 1
− 1

x− 1

=
∞∑
k=1

1

kxk
− 1

x− 1

<
∞∑
k=1

1

xk
− 1

x− 1

=
1

x− 1
− 1

x− 1
= 0

Since (E−(x))
′
< 0 for all x > 1, our proof is done. □

Note that this proposition can be used to establish the following
inequality:

E−(x) > lim
x→∞

E−(x) = e
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Proposition 3.4. For every positive integer n, the function g(n) :=
log n−

∑n
k=1

1
k

is increasing.

Proof. We have:

g(n+ 1)− g(n) = log

(
n+ 1

n

)
− 1

n+ 1

=
∞∑
k=1

1

k(n+ 1)k
− 1

n+ 1

=
∞∑
k=2

1

k(n+ 1)k
> 0

This proves our proposition. □

4. The behavior of the gamma function near its points of
discontinuity

Now let us analyze how the gamma function behaves near its points
of discontinuity. First let’s prove the following properties:

(4.1) lim
x→0

(
1

x
− Γ(x)

)
= 

(4.2) lim
x→0

(
−1

x
− Γ(−x)

)
= 

Proof. We have:

lim
x→0

(
1

x
− Γ(x)

)
= − lim

x→0

(
Γ(x)− 1

x

)
= − lim

x→0

(
Γ(1 + x)

x
− 1

x

)

= − lim
x→0

Γ(1 + x)− 1

x
= − lim

x→0

Γ(1 + x)− Γ(1)

x

= −Γ′(1) = 
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Similarly:

lim
x→0

(
−1

x
− Γ(−x)

)
= − lim

x→0

(
1

x
+ Γ(−x)

)

= − lim
x→0

(
1

x
+

Γ(1− x)

−x

)

= − lim
x→0

1− Γ(1− x)

x

= − lim
x→0

Γ(1)− Γ(1− x)

x

= −Γ′(1) = 

□

These limits tell us that the gamma function behaves almost exactly
like y = 1

x
when x gets close to 0. Combining these limits gives us:

lim
x→0

(Γ(x) + Γ(−x)) = − lim
x→0

[(
1

x
− Γ(x)

)
+

(
−1

x
− Γ(−x)

)]
= −2

Now let’s see how the gamma function behaves at other points of
discontinuity. Using the recursive formula for gamma function gives
us:

Γ(x) =
Γ(x+ n)∏n−1
k=0(x+ k)

(x+ n)Γ(x) =
(x+ n)Γ(x+ n)∏n−1

k=0(x+ k)

Note that from (4.1) we have:

lim
x→0

xΓ(x) = lim
x→0

(
x

[
Γ(x)− 1

x

]
+ 1

)
= 0 ⋅ (−) + 1 = 1

In this limit, it does not matter if x goes to zero from the left or right
side. Therefore, we have: limx→−n+(x+ n)Γ(x+ n) = (−1)n, and so:

lim
x→−n+

(x+ n)Γ(x) =
(−1)n

n!

Similarly:

lim
x→−n−

(x+ n)Γ(x) =
(−1)n

n!
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These two limit properties tell us that the gamma function behaves al-
most exactly as the function: y = c

x+n
, where c is a constant depending

on n, as x gets close to the point −n either from the left or right hand
side.

For any positive integer n, the limit properties of the gamma function
show us that the graph is almost the same around −n. The difference
in sign leads to the question of whether or not they cancel. We already
have the answer for the point x = 0 with the limit we established
earlier. They cancel each other, and so we are left with the constant
−2. Our task now is to find the following limit (LM) (or to prove
that it does not exist):

lim
x→0

(Γ(−n+ x) + Γ(−n− x))

We have:

LM = lim
x→0

(
Γ(x)∏n

k=1(x− k)
+

Γ(−x)∏n
k=1(−x− k)

)

= lim
x→0

(
Γ(x)∏n

k=1(x− k)
+

(−1)nΓ(−x)∏n
k=1(x+ k)

)

= lim
x→0

(
Γ(x)

∏n
k=1(x+ k) + (−1)nΓ(−x)

∏n
k=1(x− k)∏n

k=1(x2 − k2)

)
=

(−1)n

(n!)2
⋅ lim
x→0

(
Γ(x)

n∏
k=1

(x+ k) + (−1)nΓ(−x)
n∏
k=1

(x− k)

)

=
(−1)n

(n!)2
⋅ lim
x→0

n∑
k=0

ckx
k
(
Γ(x) + (−1)kΓ(−x)

)
=

(−1)n

(n!)2
⋅ lim
x→0

n∑
k=0

ckTk

where ck are expressions involving n, and Tk = xk
(
Γ(x) + (−1)kΓ(−x)

)
.

Note that when k is even and greater than 0, we have:

lim
x→0

ckx
k
(
Γ(x) + (−1)kΓ(−x)

)
= ck ⋅ 0 ⋅ (−2) = 0

So we are left with all the terms with k odd, and the term with k = 0,
which we will take into account later. Let’s look at the terms we have
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left (k odd):

Tk = xk (Γ(x)− Γ(−x))

= xk
[(

Γ(x)− 1

x

)
+

(
−1

x
− Γ(−x)

)
+

2

x

]
= xk

(
xΓ(x)− 1

x
+
−1− xΓ(−x)

x

)
+ 2xk−1

lim
x→0

Tk = 0 ⋅ (− + ) + 2 lim
x→0

xk−1 = 2 lim
x→0

xk−1

So Tk will go to zero if k ≥ 2. That leaves us with only two terms left
to consider. For the term T1, we have:

c1 = n!

(
1 +

1

2
+ . . .+

1

n

)
And so:

lim
x→0

c1T1 = 2n!

(
1 +

1

2
+ . . .+

1

n

)
For the term with k = 0 we have:

c0T0 = n! (Γ(x) + Γ(−x))

And so:

lim
x→0

c0T0 = −2n!

Now we have enough information to calculate our original limit:

LM =
(−1)n

(n!)2
⋅ lim
x→0

n∑
k=0

ckTk

=
(−1)n

(n!)2
⋅ lim
x→0

(c0T0 + c1T1)

=
(−1)n

(n!)2
⋅
(
−2n! + 2n!

(
1 +

1

2
+ . . .+

1

n

))
Finally:

lim
x→0

(Γ(−n+ x) + Γ(−n− x)) =
(−1)n(2H(1, n)− 2)

n!

5. Critical points of the Gamma function on the left

We will analyze the critical points of the gamma function on each
one-unit-wide interval: (−1, 0), (−2,−1), (−3,−2),.. and so forth.
For the ntℎ interval (−n,−n+ 1), let: xn = x0 + n, where x0 is the x-
coordinate of the critical point of the function on this interval (Γ′(x0) =
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0). Note that because x0 ∈ (−n,−n+ 1), we have xn ∈ (0, 1). We will
explain later how we only have one critical point per interval. Now:

Γ(x) = (x− 1)Γ(x− 1)

Γ′(x) = Γ(x− 1) + (x− 1)Γ′(x− 1)

Γ′(x) =
Γ(x)

x− 1
+

Γ(x)

Γ(x− 1)
⋅ Γ′(x− 1)

Γ′(x)

Γ(x)
=

1

x− 1
+

Γ′(x− 1)

Γ(x− 1)

Ψ(x) =
1

x− 1
+ Ψ(x− 1)

Hence:

Ψ(x) =
n∑
k=1

1

x− k
+ Ψ(x− n)

Let x0 be the x-coordinate of the critical point in the ntℎ interval, and
in the above equation let x− n = x0. That means x = x0 + n = xn, as
defined earlier. Therefore, we have:

Ψ(xn) =
n∑
k=1

1

xn − k

because Ψ(x− n) = Ψ(x0) = Γ′(x0)
Γ(x0)

= 0. In other words, xn is a root of

the equation:

(5.1) Ψ(x) =
n∑
k=1

1

x− k

We will prove that (5.1) has only one root on (0, 1), which means
the value xn is unique, as is x0. Let’s look at our recursive formula for
Ψ(x):

Ψ(x) =
1

x− 1
+ Ψ(x− 1)

Ψ(x+ 1) =
1

x
+ Ψ(x)

Ψ(x+ 1)− 1

x
= Ψ(x)

lim
x→0+

[
Ψ(x+ 1)− 1

x

]
= lim

x→0+
Ψ(x)

Ψ(1)−∞ = lim
x→0+

Ψ(x)
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with Ψ(1) = −, a constant. Therefore:

lim
x→0+

Ψ(x) = −∞

Now let’s take the first derivative of Ψ(x) using the following formula
for the digamma function:

Ψ(x) = − +
∞∑
n=1

x− 1

n(n+ x− 1)

Ψ′(x) =
∞∑
n=1

1

(n+ x− 1)2
> 0

This means that Ψ(x) is an increasing function, so when x goes from
0 to 1, Ψ(x) goes from −∞ to Ψ(1) = −. On the other hand:

d

dx

[
1

x− k

]
= − 1

(x− k)2
< 0,

which means that the right side of (5.1) is decreasing with respect to
x. When x = 0, our right side (RS) becomes:

RS =
n∑
k=1

−1

k
= −H(1, n)

Moreover:

lim
x→1−

RS = lim
x→1−

1

x− 1
+ lim

x→1−

n∑
k=2

1

x− k

= −∞+
n−1∑
k=1

−1

k

= −∞− constant
lim
x→1−

RS = −∞

Now let’s summarize what we have found. As x goes from 0 to 1, our
left side increases from −∞ to −, and our right side decreases from
−H(1, n) to −∞. This fact guarantees us exactly one solution to our
equation.

Assume that we have found the root xn to our equation. We will
now try to see whether xn+1 is smaller or greater than xn. Note that
in our equation, if we start with x = 0 and keep increasing the value
of x searching for our root, we will have our left side is smaller than
our right side. That means when we come to a value of x where we
have our left side greater than our right side, we know that we have
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”passed” our root, meaning our root is smaller than the value of x we
are at right now. Our xn+1 is the root of the following equation:

Ψ(x) =
n+1∑
k=1

1

x− k

Note that when x = xn, we have:

RS =
n∑
k=1

1

xn − k
+

1

xn − n− 1
<

n∑
k=1

1

xn − k
= Ψ(xn) = LS

So at the value x = xn, we have our left side greater than our right
side. This tells us that our root xn+1 is smaller than xn. Now we have
a strictly decreasing sequence {xn}.

Now let’s go back to our equation (5.1) and multiply both sides by
x. We have:

xΨ(x) =
n∑
k=1

x

x− k
=

n∑
k=1

(
1 +

k

x− k

)

= n+
n∑
k=1

1
x
k
− 1

= n−
n∑
k=1

1

1− x
k

= n−
n∑
k=1

∞∑
l=0

(x
k

)l
= −

n∑
k=1

∞∑
l=1

(x
k

)l
= −

∞∑
l=1

[
xl ⋅

n∑
k=1

1

kl

]
13



Now changing the notation gives us:

xΨ(x) = −
∞∑
l=1

[
xl ⋅H(l, n)

]
= −x ⋅H(1, n)−

∞∑
l=2

[
xl ⋅H(l, n)

]
= −x (log n+H(1, n)− log n)−

∞∑
l=2

[
xl ⋅H(l, n)

]
= −x log n− x (H(1, n)− log n)−

∞∑
l=2

[
xl ⋅H(l, n)

]
xΨ(x) = −x log n− A

with:

A = x (H(1, n)− log n) +
∞∑
l=2

[
xl ⋅H(l, n)

]
According to proposition 3.4, we have H(1, n)− log n =

∑n
k=1

1
k
− log n

is a decreasing function, so:

H(1, n)− log n > lim
n→∞

(H(1, n)− log n) =  > 0

and also:
H(1, n)− log n < H(1, 1)− log 1 = 1.

Also notice that:

H(s, n) =
n∑
k=1

1

ks
<
∞∑
k=1

1

ks
= �(s)

Therefore:

A = x (H(1, n)− log n) +
∞∑
l=2

[
xl ⋅H(l, n)

]
A < x+

∞∑
l=2

xl�(l)

< x�(2) +
∞∑
l=2

xl�(2)

= �(2)
∞∑
l=1

xl

= �(2) ⋅ x

1− x
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The above inequality is true because 1 < �(2) = �2

6
, and �(2) > �(l)

for all l ≥ 3. Remember that we are using the equation corresponding
to xn, and xn < x1. Therefore, we have:

A < �(2) ⋅ xn
1− xn

< �(2) ⋅ x1

1− x1

because the function f(x) = x
1−x is increasing on (0, 1). We have proved

that there is exactly one critical point in each interval. That means x1

can be considered a constant, which means A is bounded. Next we will
show that xΨ(s) is also bounded on (0, 1). From our recursive formula
for Ψ(x), we have:

Ψ(x+ 1) = Ψ(x) +
1

x
xΨ(x+ 1) = xΨ(x) + 1

lim
x→0

xΨ(x+ 1) = lim
x→0

xΨ(x) + 1

0 = lim
x→0

xΨ(x) + 1

lim
x→0

xΨ(x) = −1

The above argument is valid because Ψ(1) = −, a constant. Now the
function xΨ(x) is continuous on (0, 1), and limx→0 xΨ(x) = −1 and its
value at x = 1 is −. Therefore, xΨ(x) is bounded on (0, 1). Using
these results gives us:

−xn log n = xnΨ(xn) + A

is also bounded. Now if n goes to infinity, then in order for xn log n to
be bounded, we must have:

lim
n→∞

xn = 0

We showed earlier that H(1, n)− log n > 0. That means A > 0. Now
we have two boundaries for A:

0 < A < �(2) ⋅ xn
1− xn

However, limn→∞
xn

1−xn = limx→0
x

1−x = 0. This means that:

lim
n→∞

A = 0

Therefore:

− lim
n→∞

xn log n = lim
n→∞

xnΨ(xn) + lim
n→∞

A

− lim
n→∞

xn log n = −1 + 0

lim
n→∞

xn log n = 1
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Finally, we have established a relationship between xn and n, through
a limit property.

Now we will try to do the same thing with the value of the gamma
function at those critical points. We have:

Γ(xn) = (xn − 1)Γ(xn − 1)

= (xn − 1)(xn − 2)Γ(xn − 2)
...

Γ(xn) = Γ(xn − n)
n∏
k=1

(xn − k)

Let dn be the value of the gamma function at the critical point in the
ntℎ interval. Note that with the definition of xn, then xn − n is the
x-coordinate for the critical point on the ntℎ interval. Therefore:

dn = Γ(xn − n) =
Γ(xn)∏n

k=1(xn − k)

Let’s look at the following expression:

B =
∣
∏n

k=1(xn − k)∣
n!

We have:

B =

∏n
k=1(k − xn)

n!
=

n∏
k=1

(
k − xn
k

)

=
n∏
k=1

(
1− xn

k

)
=

n∏
k=1

⎡⎣(1− 1
k
xn

)− k
xn

⎤⎦−
xn
k

=
n∏
k=1

(
E−
(
k

xn

))−xn
k

=
n∏
k=1

(e+ �k)
−xn

k

=

(
n∏
k=1

(e+ �k)
xn
k

)−1

= C−1

with:

�k = E−
(
k

xn

)
− e > 0
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Now:

C =
n∏
k=1

(e+ �k)
xn
k =

n∏
k=1

[(
e+ �k
e

)xn
k

⋅ e
xn
k

]

=
n∏
k=1

[(
1 +

�k
e

)xn
k ⋅ e

xn
k

]
=

n∏
k=1

⎡⎢⎣
⎛⎝(1 +

1
e
�k

) e
�k

⎞⎠
�kxn
ek

⋅ e
xn
k

⎤⎥⎦
=

n∏
k=1

[(
E+

(
e

�k

)) �kxn
ek

⋅ e
xn
k

]

logC =
n∑
k=1

�kxn
ek

logE+

(
e

�k

)
+

n∑
k=1

xn
k

Since 1
xn

< 2
xn

< ... < n
xn

, we have E−
(

1
xn

)
> E−

(
2
xn

)
> ... >

E−
(
n
xn

)
, and �1 > �2 > ... > �n. Using the fact that E+(x) > 2 for all

x > 1, we have:

logC >
n∑
k=1

�kxn
ek

log 2 +
n∑
k=1

xn
k

=
n∑
k=1

�nxn log 2

ek
+

n∑
k=1

xn
k

=
�n log 2

e
⋅ xn

n∑
k=1

1

k
+ xn

n∑
k=1

1

k

=
�n log 2

e
⋅ xnH(1, n) + xnH(1, n)

=
�n log 2

e
⋅ xn (H(1, n)− log n+ log n) +

+xn (H(1, n)− log n+ log n)

=
�n log 2

e
⋅ xn (H(1, n)− log n) +

�n log 2

e
⋅ xn log n

+xn (H(1, n)− log n) + xn log n

= D

Note that:
lim
n→∞

�n = 0 = lim
n→∞

xn

lim
n→∞

xn log n = 1

lim
n→∞

(H(1, n)− log n) = 

17



Using these limits gives us:

lim
n→∞

D = 0 ⋅  + 0 ⋅ 1 + 0 ⋅  + 1 = 1

Since E+(x) < e for all x > 1, we have:

logC <
n∑
k=1

�kxn
ek

+
n∑
k=1

xn
k

=
n∑
k=1

�1xn
ek

+
n∑
k=1

xn
k

=
�1
e
⋅ xn

n∑
k=1

1

k
+ xn

n∑
k=1

1

k

=
�1
e
⋅ xnH(1, n) + xnH(1, n)

=
�1
e
⋅ xn (H(1, n)− log n+ log n) +

+xn (H(1, n)− log n+ log n)

=
�1
e
⋅ xn (H(1, n)− log n) +

�1
e
⋅ xn log n

+xn (H(1, n)− log n) + xn log n

= F

Note that when n goes to infinity, �1 also goes to zero. Therefore, we
have:

lim
n→∞

F = 0 ⋅ 0 ⋅  + 0 ⋅ 1 + 0 ⋅  + 1 = 1

Now we have D < logC < F and limn→∞D = limn→∞ F = 1. There-
fore:

lim
n→∞

logC = 1

And so:

lim
n→∞

C = e

That means:

lim
n→∞

∣
∏n

k=1(xn − k)∣
n!

= lim
n→∞

B =
1

e
18



Applying this result gives us:

∣dn∣ =
Γ(xn)

∣
∏n

k=1(xn − k)∣
=

Γ(xn + 1)

xn ⋅ ∣
∏n

k=1(xn − k)∣
n!∣dn∣
log n

= Γ(xn + 1) ⋅ 1

xn log n
⋅ n!

∣
∏

k=1(xn − k)∣

lim
n→∞

n!∣dn∣
log n

= 1 ⋅ 1

1
⋅ e

lim
n→∞

n!∣dn∣
log n

= e

And now we have established a relationship between the value of the
gamma function at its critical point in the ntℎ interval and the value
of n.

6. The bluntness of the gamma function on the negative
side

In this section, we will try to explain why the graph of the gamma
function seems to flatten out when we move to the left from one interval
to the next. In order to do that, we consider solving the following
equation in each interval:

(6.1) ∣Γ′(x)∣ = �

for some real and positive �. Let x∗k − k denote the solution to (6.1)
on the corresponding interval (−k,−k + 1). We are just interested in
finding the root that is on the right side of the critical point of that
interval. In other words, if we are solving the equation (6.1) for the
ntℎ interval, then we only look for the root x∗n that qualifies: x∗n > xn,
where xn is the critical point of the gamma function in the ntℎ interval.
We have shown earlier that:

Γ′(x) = Γ(x− 1) + (x− 1)Γ′(x− 1)

Using this properties n times gives us:

Γ′(x) = Γ(x)
n∑
k=1

1

x− k
+ Γ′(x− n)

n∏
k=1

(x− k).

Therefore:

Γ′(x− n) =
Γ′(x) + Γ(x)

∑n
k=1

1
k−x∏n

k=1(x− k)

Now assume that our sequence {x∗n} is bounded by a positive constant
s less than 1. In the other words: x∗n ≤ s < 1, for all positive integers
n. We will prove that when n is large enough, we cannot find a solution
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for equation (6.1) in the ntℎ interval. Of course this contradicts with
the fact that the domain of Γ′(x) is from negative infinity to positive
infinity on any intervals on the negative side. This contradiction would
confirm that when n is large enough, the graph of the gamma function
will look as flattened as possible.

In order to prove that we will not have an solution (on the right side
of the critical point) to (6.1) when n is large enough, it suffices to show
that: ∣Γ′(s − n)∣ < �, when n is sufficiently large. In the equation we
derived earlier, substituting x by s gives us:

∣Γ′(s− n)∣ =

∣∣∣∣∣Γ′(s) + Γ(s)
∑n

k=1
1
k−s∏n

k=1(s− k)

∣∣∣∣∣
We will analyze the numerator (N) and the denominator (D) separately.
Note that since s is a positive constant less than 1, we have Γ′(s), Γ(s),
and (1− s) are constants also. We have:

N = Γ′(s) + Γ(s)
n∑
k=1

1

k − s

= Γ′(s) +
Γ(s)

1− s
+ Γ(s)

n∑
k=2

1

k − 1 + (1− s)

< Γ′(s) +
Γ(s)

1− s
+ Γ(s)

n∑
k=2

1

k − 1

= Γ′(s) +
Γ(s)

1− s
+ Γ(s)H(1, n− 1)

Therefore:

lim
n→∞

∣N ∣
log n

≤ lim
n→∞

H(1, n− 1)

log n
= 1

Now for our denominator, we have:

∣D∣ =
n∏
k=1

(k − s) = (1− s)
n∏
k=2

(k − 1 + (1− s))

> (1− s)
n∏
k=2

(k − 1) = (1− s)(n− 1)!

∣D∣
(n− 1)!

> 1− s
20



Combining these results gives us:

lim
n→∞

∣N ∣
logn

∣D∣
(n−1)!

<
1

1− s

or:

lim
n→∞

(
∣N ∣
∣D∣
⋅ (n− 1)!

log n

)
<

1

1− s
However: limn→∞

(n−1)!
logn

=∞. This tells us that:

lim
n→∞

∣N ∣
∣D∣

= 0

In other words: limn→∞ ∣Γ′(s−n)∣ = 0. Note that what we have proved
is pretty powerful. It tells us that no matter how close s is to 1, we
always have Γ′(s−n) as close to zero as possible when n is large enough.
Equivalently:

lim
n→∞

x∗n = 1.

Our next goal is to analyze how fast x∗n goes to 1. We will do that by
analyzing the sequence {yn} defined as: yn = 1−x∗n. Since limn→∞ x

∗
n =

1, we have: limn→∞ yn = 0. We have:

∣Γ′(x∗n − n)∣ =

∣∣∣∣∣∣
Γ′(x∗n) + Γ(x∗n)

∑n
k=1

(
1

k−x∗n

)
∏n

k=1(k − x∗n)

∣∣∣∣∣∣ = �.

Changing the variable gives us:

∣Γ′(x∗n − n)∣ =

∣∣∣∣∣∣
Γ′(1− yn) + Γ(1− yn)

∑n−1
k=0

(
1

yn+k

)
∏n−1

k=0(yn + k)

∣∣∣∣∣∣ = �

∣∣∣∣∣∣
Γ′(1− yn) + Γ(1−yn)

yn
+ Γ(1− yn)

∑n−1
k=1

(
1

yn+k

)
∏n−1

k=0(yn + k)

∣∣∣∣∣∣ = �

∣∣∣∣∣∣ Γ′(1− yn)∏n−1
k=0(yn + k)

+
Γ(1− yn)

yn
∏n−1

k=0(yn + k)
+

Γ(1− yn)
∑n−1

k=1

(
1

yn+k

)
∏n−1

k=0(yn + k)

∣∣∣∣∣∣ = �

∣A+B + C∣ = �,

with A, B, and C are the first, second, and third term respectively. We
will take the limit when n goes to infinity for both sides. Notice that:

lim
n→∞

Γ′(1− yn) = Γ′(1) = −,
21



and:

lim
n→∞

Γ(1− yn) = Γ(1) = 1.

The first thing we can easily notice is that: limn→∞A = 0. Dealing with
B and C requires us to prove something first. Recall that when we have
the sequence {xn} that qualifies: 0 < xn < 1, and limn→∞ xn log n = 1,
we have:

lim
n→∞

∏n
k=1(k − xn)

n!
=

1

e

When we look back at the proof, we can see that if we had limn→∞ xn log n =
c instead of 1, we would have:

lim
n→∞

∏n
k=1(k − xn)

n!
=

1

ec

Now let’s look at the following limit:

lim
n→∞

(∏n
k=1(k − xn)

n!
⋅
∏n

k=1(k + xn)

n!

)
= lim

n→∞

∏n
k=1(k2 − x2

n)

(n!)2

= lim
n→∞

n∏
k=1

(
k2 − x2

n

k2

)

= lim
n→∞

n∏
k=1

(
1−

(xn
k

)2
)

= lim
n→∞

sin(�xn)

�xn
= 1

From the limit we just derived, we have:

lim
n→∞

∏n
k=1(k + xn)

n!
= ec,

Note that the second to last equal sign should be justified more for-
mally, or we can use the similar proof that we did for the other case.
Assume we have limn→∞ xn log n = c. Let:

G =
∣
∏n

k=1(xn + k)∣
n!
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We have:

B =

∏n
k=1(k + xn)

n!
=

n∏
k=1

(
k + xn
k

)

=
n∏
k=1

(
1 +

xn
k

)
=

n∏
k=1

⎡⎣(1 +
1
k
xn

) k
xn

⎤⎦
xn
k

=
n∏
k=1

(
E+

(
k

xn

))xn
k

=
n∏
k=1

(e− �k)
xn
k = H

with:

�k = e− E+

(
k

xn

)
> 0

Now:

H =
n∏
k=1

(e− �k)
xn
k =

n∏
k=1

[(
e− �k
e

)xn
k

⋅ e
xn
k

]

=
n∏
k=1

[(
1− �k

e

)xn
k ⋅ e

xn
k

]
=

n∏
k=1

⎡⎢⎣
⎛⎝(1− 1

e
�k

)− e
�k

⎞⎠
−�kxn
ek

⋅ e
xn
k

⎤⎥⎦
=

n∏
k=1

[(
E−
(
e

�k

))−�kxn
ek

⋅ e
xn
k

]

logH =
n∑
k=1

−�kxn
ek

logE−
(
e

�k

)
+

n∑
k=1

xn
k

Since 1
xn

< 2
xn

< ... < n
xn

, we have E+
(

1
xn

)
< E+

(
2
xn

)
< ... <

E+
(
n
xn

)
, and �1 > �2 > ... > �n. We have k

xn
≥ 1

xn
≥ 1. Therefore,

�k = e − E+
(
k
xn

)
< e − E+(1) = e − 2 < 1. Hence, e

�k
> e > 2.
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Therefore, E−
(
e
�k

)
< E−(2) = 4. We have:

logH >

n∑
k=1

−�kxn
ek

log 4 +
n∑
k=1

xn
k

>
n∑
k=1

−�1xn log 4

ek
+

n∑
k=1

xn
k

= −�1 log 4

e
⋅ xn

n∑
k=1

1

k
+ xn

n∑
k=1

1

k

= −�1 log 4

e
⋅ xnH(1, n) + xnH(1, n)

= −�1 log 4

e
⋅ xn (H(1, n)− log n+ log n) +

+xn (H(1, n)− log n+ log n)

= −�1 log 4

e
⋅ xn (H(1, n)− log n)− �1 log 4

e
⋅ xn log n

+xn (H(1, n)− log n) + xn log n

= D

Note that:

lim
n→∞

�1 = 0 = lim
n→∞

xn

lim
n→∞

xn log n = c

lim
n→∞

(H(1, n)− log n) = 

Using these limits gives us:

lim
n→∞

D = 0 ⋅  + 0 ⋅ c+ 0 ⋅  + c = c
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Since E−(x) > e for all x > 1, we have:

logH < −
n∑
k=1

�kxn
ek

+
n∑
k=1

xn
k

= −
n∑
k=1

�nxn
ek

+
n∑
k=1

xn
k

= −�n
e
⋅ xn

n∑
k=1

1

k
+ xn

n∑
k=1

1

k

= −�n
e
⋅ xnH(1, n) + xnH(1, n)

= −�n
e
⋅ xn (H(1, n)− log n+ log n) +

+xn (H(1, n)− log n+ log n)

= −�n
e
⋅ xn (H(1, n)− log n)− �n

e
⋅ xn log n

+xn (H(1, n)− log n) + xn log n

= F

Note that when n goes to infinity, �n also goes to zero. Therefore, we
have:

lim
n→∞

F = 0 ⋅ 0 ⋅  − 0 ⋅ c+ 0 ⋅  + c = c

Now we have D < logH < F and limn→∞D = limn→∞ F = c. There-
fore:

lim
n→∞

logH = c

And so:

lim
n→∞

H = ec

That means:

lim
n→∞

∣
∏n

k=1(xn + k)∣
n!

= lim
n→∞

G = ec

Now let’s go back to analyze our terms B and C. Notice that:

n−1∏
k=1

(yn + k) >
n−1∏
k=1

k = (n− 1)!

and:
n∑
k=2

1

k
<

n−1∑
k=1

(
1

yn + k

)
<

n−1∑
k=1

1

k
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Therefore:

lim
n→∞

∑n−1
k=1

(
1

yn+k

)
log n

= 1

We have:

∣A+B + C∣ = �∣∣∣∣AC +
B

C
+ 1

∣∣∣∣ =
�

C

lim
n→∞

∣∣∣∣∣∣ 1

yn
∑n−1

k=1

(
1

yn+k

) + 1

∣∣∣∣∣∣ = ∞

lim
n→∞

yn

n−1∑
k=1

(
1

yn + k

)
= 0

lim
n→∞

⎛⎝(yn log n) ⋅

∑n−1
k=1

(
1

yn+k

)
log n

⎞⎠ = 0

lim
n→∞

(yn log n) ⋅ 1 = 0

lim
n→∞

yn log n = 0

Using this limit gives us:

lim
n→∞

∏n
k=1(k − yn)

n!
=

1

e0
= 1

and:

lim
n→∞

∏n
k=1(k + yn)

n!
= e0 = 1

From our equation: ∣A+B+C∣ = �, multiplying both sides by yn
∏n−1

k=0

and taking the limit when n goes to infinity gives us:

∣0 + 1 + 0∣ = lim
n→∞

�y2
n

n−1∏
k=1

(yn + k)

lim
n→∞

(
y2
n

yn + n

n∏
k=1

(yn + k)

)
=

1

�

lim
n→∞

(
y2
n(n− 1)! ⋅ n

yn + n
⋅
∏n

k=1(yn + k)

n!

)
=

1

�

lim
n→∞

y2
n(n− 1)! =

1

�
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Now we will use this limit property to prove that for n sufficiently
large, the sequence {x∗n} is strictly increasing. Using the recursive
formula for the first derivative of the gamma function n times gives us:

Γ′(x∗n) = Γ(x∗n)
n∑
k=1

1

x∗n − k
+ �

n∏
k=1

∣x∗n − k∣

After dividing both sides by Γ(x∗n), we have:

Ψ(x∗n) =
n∑
k=1

1

x∗n − k
+ � ⋅

∏n
k=1 ∣x∗n − k∣

Γ(x∗n)

Moreover, Γ(x∗n) = Γ(x∗n − n)
∏n

k=1(x∗n − k). Therefore, we have:

Ψ(x∗n) =
n∑
k=1

1

x∗n − k
+

�

∣Γ(x∗n − n)∣
or:

(6.2) fn(x∗n) =
�

∣Γ(x∗n − n)∣
where:

(6.3) fn(x∗n) = Ψ(x∗n) +
n∑
k=1

1

k − x∗n
Note that in the equation (6.2) our left hand side is increasing on the
interval (xn, 1) and our right hand side is decreasing on the interval
(xn, 1). Now let’s look at equivalent equation we need to solve to find
a solution, on the next interval, to our original equation ∣Γ′(x)∣ = �.
That is:

fn+1(x) =
�

∣Γ(x− n− 1)∣
Letting x = x∗n makes our left side become:

fn+1(x∗n) = Ψ(x∗n) +
n∑
k=1

1

k − x∗n
+

1

n+ 1− x∗n

=
�

∣Γ(x∗n − n)∣
+

1

n+ 1− x∗n
On the other hand, our right side would be:

�

∣Γ(x∗n − n− 1)∣
=
�(n+ 1− x∗n)

∣Γ(x∗n − n)∣
For finding x∗n+1, if we start at the critical point of this interval, xn+1,
we will have our left side is zero and our right side is positive. This
means that at any point, if we have the value of the left side still smaller
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than the right side, we know that our solution, x∗n+1, is greater than
that point. In other words, if we have:

�

∣Γ(x∗n − n)∣
+

1

n+ 1− x∗n
≤ �(n+ 1− x∗n)

∣Γ(x∗n − n)∣
then we can conclude that x∗n+1 ≥ x∗n. The inequality gives us:

1

n+ 1− x∗n
≤ �(n− x∗n)

∣Γ(x∗n − n)∣

� ≥ ∣Γ(x∗n − n)∣
(n− x∗n)(n+ 1− x∗n)

=
∣Γ(x∗n − 1)∣

(n− x∗n)(n+ 1− x∗n)
∏n

k=2(k − x∗n)

=
∣Γ(−yn)∣

(n− 1 + yn)(n+ yn)
∏n−1

k=1(yn + k)

=
∣Γ(1− yn)∣

(n− 1 + yn)(n+ yn)
∏n−1

k=0(yn + k)

We have:
n−1∏
k=0

(yn + k) = yn

n−1∏
k=1

(yn + k)

n−1∏
k=0

(yn + k) =
(
y2
n(n− 1)!

)
⋅
(∏n

k=1(yn + k)

n!

)
⋅
(

n

yn(yn + n)

)

lim
n→∞

n−1∏
k=0

(yn + k) =
1

�
⋅ 1 ⋅ ∞ =∞

Therefore, the limit of the right side of our inequality when n goes to
infinity is zero. This means that with n is large enough, our inequality
is qualified, since � is positive. In other words, when n is sufficiently
large, our sequence {x∗n} is strictly increasing.

7. Properties involving the gamma function

Proposition 7.1. ∫ ∞
0

e−x log2 xdx =
�2

6
+ 2

Proof. From the definition of the gamma function, we can come up
with the formula for the second derivative of the gamma function, and
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that is:

Γ′′(x) =

∫ ∞
0

tx−1e−t log2 tdt

Therefore:

Γ′′(1) =

∫ ∞
0

e−t log2 tdt =

∫ ∞
0

e−x log2 xdx

To calculate Γ′′(1), we first need to calculate Ψ′(1). We have the fol-
lowing formula for Ψ(x):

Ψ(x+ 1) = − +
∞∑
r=1

x

r(r + x)

Ψ′(x+ 1) =
∞∑
r=1

1

(r + x)2

Ψ′(1) =
∞∑
r=1

1

r2
= �(2) =

�2

6

Remember that: Ψ(x) = Γ′(x)
Γ(x)

. Therefore:

Ψ′(x) =
Γ′′(x)Γ(x)− (Γ′(x))2

Γ2(x)

Ψ′(1) = Γ′′(1)− 2

Γ′′(1) =
�2

6
+ 2

Therefore, we have:∫ ∞
0

e−x log2 xdx = Γ′′(1) =
�2

6
+ 2

This proves our proposition. □

Proposition 7.2.

(7.1) lim
n→∞

(
n− Γ

(
1

n

))
= 
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Proof. We have:

lim
n→∞

(
n− Γ

(
1

n

))
= − lim

n→∞

(
Γ

(
1

n

)
− n

)
= − lim

n→∞

(
Γ
(
1 + 1

n

)
1
n

− 1
1
n

)

= − lim
n→∞

Γ
(
1 + 1

n

)
− 1

1
n

= − lim
n→∞

Γ
(
1 + 1

n

)
− Γ(1)

1
n

= −Γ′(1) = 

Our proposition is proved. □

In this coming section, I hope you will forgive me the mildest of
abuses of notation. When integrating up to or over the discontinous
points of Γ(x) the proper notation of the underlying limiting process
may be omitted for the sake of sanity and simplicity.

8. Area Under the Curve

When considering
∫ b
a

Γ(x)dx several questions arise.

∙ For what values of a, b does this integral converge?
∙ For what values of a, b, if any, does this integral diverge?
∙ As a→ −∞ does this integral converge or diverge?

In order to better understand the answers to these questions, it be-
comes necessary to first examine the behavior of Γ(x) near its points
of discontinuity.

Proposition 8.1. For all natural numbers, k, and for real x, Γ(x) ≈ (−1)k

x(k!)

as x→ −k. Formally, we claim
∣∣∣limx→0

(
Γ(x− k)− (−1)k

x(k!)

)∣∣∣ <∞.

Proof. We shall prove this by induction. We first show that∣∣limx→0

(
Γ(x)− 1

x

)∣∣ <∞. We recall the recurrence relation,

Γ(x) =
Γ(x+ 1)

x
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⇒ lim
x→0

(
Γ(x)− 1

x

)
= lim

x→0

(
Γ(x+ 1)

x
− 1

x

)
= lim

x→0

(
Γ(1 + x)− Γ(1)

x

)
= Γ′(1)

= −

We assume that
∣∣∣limx→0

(
Γ(x− n)− (−1)n

x(n!)

)∣∣∣ <∞. To complete our

induction we must show
∣∣∣limx→0

(
Γ(x− (n+ 1))− (−1)(n+1)

x((n+1)!)

)∣∣∣ < ∞.

Recalling the recurrence relation of Γ(x), we may write

Γ(x− (n+ 1)) = Γ(x−n)
x−(n+1)

.

⇒ lim
x→0

(
Γ(x− (n+ 1))− (−1)(n+1)

x((n+ 1)!)

)
= lim

x→0

(
Γ(x− n)

x− (n+ 1)
− (−1)(n+1)

x((n+ 1)!)

)
= lim

x→0

(
−1

n+ 1

)(
Γ(x− n)

1− x
n+1

− −1n

x(n!)

)

= lim
x→0

(
−1

n+ 1

)(
Γ(x− n)− (−1)n

x(n!)

)
+ lim

x→0

(
−1

n+ 1

)(
Γ(x− n)

1− x
n+1

− Γ(x− n)

)

Since by our inductive hypothesis
∣∣∣limx→0

(
Γ(x− n)− (−1)n

x(n!)

)∣∣∣ <∞,

we must now show
∣∣∣limx→0

(
Γ(x−n)
1− x

n+1
− Γ(x− n)

)∣∣∣ <∞.
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lim
x→0

(
Γ(x− n)

1− x
n+1

− Γ(x− n)

)
= lim

x→0

(
xΓ(x−n)
n+1

1− x
n+1

)

= lim
x→0

(
xΓ(x− n)

n+ 1− x

)

= lim
x→0

⎛⎜⎜⎝x
(

(−1)n

x(n!)

)(
Γ(x−n)
(−1)n

x(n!)

)
n+ 1− x

⎞⎟⎟⎠

= lim
x→0

(
(−1)n

(n!)

)⎛⎜⎜⎝
(

Γ(x−n)
(−1)n

x(n!)

)
n+ 1− x

⎞⎟⎟⎠
Now since we have

∣∣∣limx→0

(
Γ(x− n)− (−1)n

x(n!)

)∣∣∣ < ∞, and since

each term individually diverges to ±∞, it immediately follows that

limx→0

(
Γ(x−n)
(−1)n

x(n!)

)
→ 1. So we may conclude that

lim
x→0

(
(−1)n

(n!)

)⎛⎜⎜⎝
(

Γ(x−n)
(−1)n

x(n!)

)
n+ 1− x

⎞⎟⎟⎠ =
(−1)n

(n+ 1)!

And so, since this limit is finite as well, we have∣∣∣limx→0

(
Γ(x− (n+ 1))− (−1)(n+1)

x((n+1)!)

)∣∣∣ < ∞, completing our induction.

In point of fact, our method of solution not only implies that this
limit is finite, but provides a method of calculating it. If we denote

the value of this limit by Cn = limx→0

(
Γ(x− (n+ 1))− (−1)(n+1)

x((n+1)!)

)
, we

may establish a recurrence relation,

C0 = −

Cn =
−1

n
(Cn−1) +

(−1)n

(n)(n!)

□

Armed with this proof, we are ready to answer some of our original
questions about the Gamma function.
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Proposition 8.2.
∫ b
b−� Γ(x)dx diverges if b is either zero or a negative

integer, and for any arbitrary � ∈ (0, 1).

Proof. Before we begin, we shall make a definition which shall be used
throughout the rest of this paper. We define,

Ek(x) = Γ(x− k)− (−1)k

x(k!)
We are now well-equipped to tackle the proof of our proposition.∫ b

b−�
Γ(x)dx =

∫ 0

−�
Γ(x− b)dx

=

∫ 0

−�

(−1)b

x(b!)
+

∫ 0

−�
Eb(x)dx∫ 0

−�
(−1)b

x(b!)
clearly diverges, so all we need to demonstrate is the con-

vergance of
∫ 0

−� Eb(x)dx and we will have shown that
∫ 0

−� Γ(x− b)dx
diverges.

Certainly for all x ∈ (0, 1) Eb(x) is finite, and by Proposition 8.1
limx→0Eb(x) is finite. Now, since Eb(x) is continuous, we may conclude
that Eb(x) is bounded on the interval (−�, 0). Since we are integrating
a function over a finite interval upon which it is bounded we may
conclude that, ∣∣∣∣∫ 0

−�
Eb(x)dx

∣∣∣∣ <∞
⇒
∫ b

b−�
Γ(x)dx→ ±∞

□

It is trivial to show that a nigh-identical proof could be used to show

that
∫ a+�

a
Γ(x)dx diverges as well if a is either 0 or a negative integer

and � ∈ (0, 1).

Proposition 8.3. Although
∫ k+�

k−� Γ(x)dx is not well-defined for all neg-
ative integers, k and � ∈ (0, 1), the Cauchy principal value defined by∫ �

0
(Γ(x− k) + Γ(−x− k)) dx is well-defined and finite.

Before we begin the proof it is important to stress that we may

only take a principal value of this integral.
∫ k
k−� Γ(x)dx → ±∞ and∫ k+�

k
Γ(x)dx → ∓∞, so the value of this integral is not well-defined

unless we consider its principal value.
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Proof.∫ �

0

(Γ(x− k) + Γ(−x− k)) dx =

∫ �

0

(
(−1)k

x(k!)
+

(−1)k

(−x)(k!)
+ Ek(x) + Ek(−x)

)
dx

=

∫ �

0

(0 + Ek(x) + Ek(−x)) dx

=

∫ �

−�
Ek(x)dx

As before, for all x ∈ (0, 1) and for all x ∈ (−1, 0) Ek(x) is finite,
and by Proposition 8.1 limx→0Ek(x) is finite. Now, since Ek(x) is
continuous, we may conclude that Ek(x) is bounded on the interval
(−�, �). Since we are integrating a function over a finite interval upon
which it is bounded we may conclude that,∣∣∣∣∫ �

−�
Ek(x)dx

∣∣∣∣ <∞
⇒
∣∣∣∣∫ �

0

(Γ(x− k) + Γ(−x− k)) dx

∣∣∣∣ <∞
□

Proposition 8.4.
∫ b
a

Γ(x)dx is finite if neither of a, b are 0 or a negative
integer, provided we take the value of the integral over any point of
discontinuity to be the Cauchy principal value thereof.

Proof. This is an immediate consequence of proposition 8.3. Let n
denote ⌊b− a⌋ We may write∫ b

a

Γ(x)dx =
n∑
k=1

(∫ a+k

a+k−1

Γ(x)dx

)
+

∫ b

a+n

Γ(x)dx

By proposition 8.3 we know that the principal value of each of these
integrals is finite. So, we have a finite sum of finite terms, which
therefore must be finite. □

Proposition 8.5.
∫ b
a

Γ(x)dx diverges if at least one of a, b is either 0 or
a negative integer.

Proof. If only one of a, b is either 0 or a negative integer, then this proof
immediately follows from proposition 8.4. Without loss of generality
assume that b is either 0 or a negative integer. Further let us assume
that b− a > 1 since if it is not, then this is true by proposition 8.2
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∫ b

a

Γ(x)dx =

∫ b−�

a

Γ(x)dx+

∫ b

b−�
Γ(x)dx

We know that
∫ b−�
a

Γ(x)dx is finite by proposition 8.4 and we know

that
∫ b
b−� Γ(x)dx diverges by proposition 8.2. So,

∫ b
a

Γ(x)dx diverges as
well.

Now let us consider the case where both a, b are one of either 0 or
a negative integer. We need to show that we cannot take a principal
value in this case. Let n = b− a.

∫ b

a

Γ(x)dx =

∫ a+n

a

Γ(x)dx

=

∫ a+ 1
2

a

Γ(x)dx+

∫ a+n− 1
2

a+ 1
2

Γ(x)dx+

∫ a+n

a+n− 1
2

Γ(x)dx

We know
∫ a+n− 1

2

a+ 1
2

Γ(x)dx to be finite by proposition 8.4. So we must

now show that we cannot take a principal value for
∫ a+ 1

2

a
Γ(x)dx +∫ a+n

a+n− 1
2

Γ(x)dx.

∫ a+ 1
2

a

Γ(x)dx+

∫ a+n

a+n− 1
2

Γ(x)dx =

∫ 1
2

0

Γ(x− a)dx+

∫ 0

− 1
2

Γ(x− (a+ n))dx

=

∫ 1
2

0

Γ(x− a)dx+

∫ 1
2

0

Γ(−x− (a+ n))dx

=

∫ 1
2

0

(Γ(x− a) + Γ(−x− (a+ n))dx

=

∫ 1
2

0

(−1)a

x(a!)
+

(−1)a+n

x((a+ n)!)
+ Ea(x) + Ea+n(x)dx

Now, since
∫ 1

2

0
Ea(x)dx and

∫ 1
2

0
Ea+n(x)dx are both finite, we must

have that
∫ b
a

Γ(x)dx converges if and only if
∫ 1

2

0
(−1)a

x(a!)
+ (−1)a+n

x((a+n)!)
dx does.

It can be clearly seen that this only happens when n = 0, so we are
done. □

Proposition 8.6.
∫ b
−∞ Γ(x)dx does not converge for any value of b.

Proof. We will prove this by contradiction. We assume that there exists
a real number c such that
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∫ b

−∞
Γ(x)dx = c

This implies that ∀� > 0 ∃ a real number N such that ∀n > N∣∣∣(∫ b−n Γ(x)dx
)
− c
∣∣∣ < �. However, all we have to do is choose an integer

n > N and
∫ b
−n Γ(x)dx diverges, therefore this cannot be true. □
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