On the Prime Number Subset of the Fibonacci Numbers

Lacey Fish ${ }^{1} \quad$ Brandon Reid ${ }^{2} \quad$ Argen West ${ }^{3}$

${ }^{1}$ Department of Mathematics
Louisiana State University
Baton Rouge, LA
${ }^{2}$ Department of Mathematics
University of Alabama
Tuscaloosa, AL
³Department of Mathematics
University of Louisiana Lafayette
Lafayette, LA

What is a sieve?

What is a sieve?

> A sieve is a method to count or estimate the size of "sifted sets" of integers. Well, what is a sifted set? A sifted set is made of the remaining numbers after filtering.

What is a sieve?

What is a sieve?

A sieve is a method to count or estimate the size of "sifted sets" of integers. Well, what is a sifted set? A sifted set is made of the remaining numbers after filtering.

History

Two Famous and Useful Sieves

- Sieve of Eratosthenes
- Brun's Sieve

History

Two Famous and Useful Sieves

■ Sieve of Eratosthenes

- Brun's Sieve

History

The Sieve of Eratosthenes

	2	3	4	5	6	7	8	9	10	Prime numbers
11	12	13	14	15	16	17	18	19	20	2
21	22	23	24	25	26	27	28	29	30	
31	32	33	34	35	36	37	38	39	40	
41	42	43	44	45	46	47	48	49	50	
51	52	53	54	55	56	57	58	59	60	
61	62	63	64	65	66	67	68	69	70	
71	72	73	74	75	76	77	78	79	80	
81	82	83	84	85	86	87	88	89	90	
91	92	93	94	95	96	97	98	99	100	
101	102	103	104	105	106	107	108	109	110	
111	112	113	114	115	116	117	118	119	120	

Sieve Theory

Prime numbers

Sieve Theory

Lacey Fish, Brandon Reid, Argen West
LSU, UA, ULL

Sieve Theory

Lacey Fish, Brandon Reid, Argen West
LSU, UA, ULL

Sieve Theory

Lacey Fish, Brandon Reid, Argen West
LSU, UA, ULL

Sieve Theory

Lacey Fish, Brandon Reid, Argen West
LSU, UA, ULL

Sieve Theory

Lacey Fish, Brandon Reid, Argen West
LSU, UA, ULL

Sieve Theory

Lacey Fish, Brandon Reid, Argen West
LSU, UA, ULL

Sieve Theory

Lacey Fish, Brandon Reid, Argen West
LSU, UA, ULL

Sieve Theory

Lacey Fish, Brandon Reid, Argen West
LSU, UA, ULL

Sieve Theory

Lacey Fish, Brandon Reid, Argen West
LSU, UA, ULL

Sieve Theory

Lacey Fish, Brandon Reid, Argen West
LSU, UA, ULL

Sieve Theory

Lacey Fish, Brandon Reid, Argen West
LSU, UA, ULL

Sieve Theory

Lacey Fish, Brandon Reid, Argen West
LSU, UA, ULL

Sieve Theory

Lacey Fish, Brandon Reid, Argen West
LSU, UA, ULL

Sieve Theory

Sieve Theory

Sieve Theory

Sieve Theory

Sieve Theory

Sieve Theory

Sieve Theory

Sieve Theory

Sieve Theory

Sieve Theory

Sieve Theory

Sieve Theory

Sieve Theory

Sieve Theory

Sieve Theory

Sieve Theory

Sieve Theory

Sieve Theory

Brun Sieve

The Brun sieve is a generalized method compared to the Eratosthenes sieve. It allows us to sieve any set A with a designated set \mathcal{P}. It is formally stated as:

$$
S(A, \mathcal{P}, z)=\left|A \backslash \bigcup_{p \in P(z)} A_{p}\right|
$$

But what does that mean???

Sieve Theory

Brun Sieve

The Brun sieve is a generalized method compared to the Eratosthenes sieve. It allows us to sieve any set A with a designated set \mathcal{P}. It is formally stated as:

$$
S(A, \mathcal{P}, z)=\left|A \backslash \bigcup_{p \in P(z)} A_{p}\right|
$$

But what does that mean???

Brun Sieve

The Brun sieve is a generalized method compared to the Eratosthenes sieve. It allows us to sieve any set A with a designated set \mathcal{P}. It is formally stated as:

$$
S(A, \mathcal{P}, z)=\left|A \backslash \bigcup_{p \in P(z)} A_{p}\right|
$$

But what does that mean???

For clarity, let us look at an example

We may take

$$
A=\{5,6,10,11,12,13,18,20,22,24,28,35\}
$$

and

$$
\mathcal{P}=\{2,7\} .
$$

By sifting A with the given \mathcal{P}, we see
$A_{2}=\{6,10,12,18,20,22,24,28\}$, and $A_{7}=\{28,35\}$
We are left with $S(A, \mathcal{P}, z)=|\{5,11,13\}|=3$.

Sieve Theory

For clarity, let us look at an example

We may take

$$
A=\{5,6,10,11,12,13,18,20,22,24,28,35\}
$$

and

$$
\mathcal{P}=\{2,7\} .
$$

By sifting A with the given \mathcal{P}, we see
$A_{2}=\{6,10,12,18,20,22,24,28\}$, and $A_{7}=\{28,35\}$
We are left with $S(A, \mathcal{P}, z)=|\{5,11,13\}|=3$.

For clarity, let us look at an example

We may take

$$
A=\{5,6,10,11,12,13,18,20,22,24,28,35\}
$$

and

$$
\mathcal{P}=\{2,7\} .
$$

By sifting A with the given \mathcal{P}, we see

$$
A_{2}=\{6,10,12,18,20,22,24,28\}, \text { and } A_{7}=\{28,35\}
$$

. We are left with $S(A, \mathcal{P}, z)=|\{5,11,13\}|=3$.

For clarity, let us look at an example

We may take

$$
A=\{5,6,10,11,12,13,18,20,22,24,28,35\}
$$

and

$$
\mathcal{P}=\{2,7\} .
$$

By sifting A with the given \mathcal{P}, we see

$$
A_{2}=\{6,10,12,18,20,22,24,28\}, \text { and } A_{7}=\{28,35\}
$$

. We are left with $S(A, \mathcal{P}, z)=|\{5,11,13\}|=3$.

Other Brun Results

- Twin Prime Conjecture

■ Goldbach Conjecture

Other Brun Results

■ Twin Prime Conjecture

- Goldbach Conjecture

Twin Prime Conjecture

Conjecture

The Tunin Prime Conjecture states that there are infinitely many primes p such that $p+2$ is also prime. An example is $(5,7)$. This is an unproven conjecture at this point; however, Brun used his sieve to show that the sum of the recipricals converges.

Brun used his sieve to make progress on the conjecture by showing that there are infinitely many pairs of integers differing by 2 , where each of the member of the pair is the product of at most 9 primes.

Sieve Theory

Twin Prime Conjecture

Conjecture

The Twin Prime Conjecture states that there are infinitely many primes p such that $p+2$ is also prime. An example is $(5,7)$. This is an unproven conjecture at this point; however, Brun used his sieve to show that the sum of the recipricals converges.

Brun used his sieve to make progress on the conjecture by showing that there are infinitely many pairs of integers differing by 2 , where each of the member of the pair is the product of at most 9 primes.

Twin Prime Conjecture

Conjecture

The Twin Prime Conjecture states that there are infinitely many primes p such that $p+2$ is also prime. An example is $(5,7)$. This is an unproven conjecture at this point; however, Brun used his sieve to show that the sum of the recipricals converges.

Brun used his sieve to make progress on the conjecture by showing that there are infinitely many pairs of integers differing by 2 , where each of the member of the pair is the product of at most 9 primes.

Goldbach Conjecture

This is one of the oldest unsolved problems in mathematics.

Conjecture

Every even integer greater than 2 is a Goldbach number, which is a number that can be expressed as two primes.

For example:

Brun used his sieve to make progress on this conjecture as well. He showed that very even number is the sum of two numbers each of which is the product of at most 9 primes

Sieve Theory

Goldbach Conjecture

This is one of the oldest unsolved problems in mathematics.

Conjecture

Every even integer greater than 2 is a Goldbach number, which is a number that can be expressed as two primes.

For example:

Brun used his sieve to make progress on this conjecture as well. He showed that very even number is the sum of two
numbers each of which is the product of at most g prime

Goldbach Conjecture

This is one of the oldest unsolved problems in mathematics.

Conjecture

Every even integer greater than 2 is a Goldbach number, which is a number that can be expressed as two primes.

For example:

Brun used his sieve to make progress on this conjecture as well. He showed that very even number is the sum of two
numbers each of which is the product of at most g pripues

Goldbach Conjecture

This is one of the oldest unsolved problems in mathematics.

Conjecture

Every even integer greater than 2 is a Goldbach number, which is a number that can be expressed as two primes.

For example:

$$
\begin{aligned}
& 2+2=4 \\
& 3+3=6 \\
& 3+5=8 .
\end{aligned}
$$

Brun used his sieve to make progress on this conjecture as well. He showed that very even number is the sum of two

Goldbach Conjecture

This is one of the oldest unsolved problems in mathematics.

Conjecture

Every even integer greater than 2 is a Goldbach number, which is a number that can be expressed as two primes.

For example:

$$
\begin{gathered}
2+2=4 \\
3+3=6 \\
3+5=8 .
\end{gathered}
$$

Brun used his sieve to make progress on this conjecture as well. He showed that very even number is the sum of two numbers each of which is the product of at most 9 primes

The Famous Fibonacci Sequence

The Fibonacci Sequence is: F_{n}, defined by the recurrence relation:

$$
F_{n}=F_{n-1}+F_{n-2} .
$$

They have seed values of $F_{0}=0$ and $F_{1}=1$. The first few
terms are $1,1,2,3,5,8,13,21 \ldots$

The Famous Fibonacci Sequence

The Fibonacci Sequence is: F_{n}, defined by the recurrence relation:

$$
F_{n}=F_{n-1}+F_{n-2} .
$$

They have seed values of $F_{0}=0$ and $F_{1}=1$. The first few terms are 1,1,2,3,5,8,13,21...

Brun Sieve and the Fibonacci Sequence

Let us take a finite amount of the Fibonacci sequence.

$$
A=F_{n}=\{2,3,5,8,13,21,34,55,89,144,233,377,610\}
$$

and let $\mathcal{P}=\{2,3,5,7,11, \ldots\}$. After filtering using the set \mathcal{P}, the primes, we are left with

$$
S(A, \mathcal{P}, z)=|\{2,3,5,13,89,233\}|=6
$$

. These are the prime Fibonacci numbers within this given F_{n}.

Fibonacci Primes

A Fibonacci number that is prime. Their finiteness is unknown. It has been calculated that the largest known Fibonacci prime is F_{81839}, which has 17103 digits. It was proven to be such by Broadhurst and de Water in 2001.

Carmichael's Theorem

Theorem

Every Fibonacci number (aside from 1, 8, and 144) has at least one unique prime factor that has not been a factor of the preceding Fibonacci numbers.

$\begin{array}{llllllllll}0 & 1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34\end{array}$

Sieve Theory

Fibonacci sequence

Sieve Theory

Fibonacci sequence mod 7

$0,1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1,1 \ldots$

Sieve Theory

Theorem

Let P be an arbitrary finite collection of primes. Then there exists a Fibonacci number that has no factors in P.

Finding Relative Primes

Modulo 2: zeros every $3^{\text {rd }}$ term

 Modulo 3: zeros every $4^{\text {th }}$ term Modulo 7: zeros every $8^{\text {th }}$ term $24^{\text {th }}$ term: 46368 $=2 \times 23184=3 \times 15456=7 \times 6624$ $25^{\text {th }}$ term: 75025 $\equiv 1 \bmod 2$ $\equiv 1 \bmod 3$ $\equiv 6 \bmod 7$
Finding Relative Primes

Modulo 2: zeros every $3^{\text {rd }}$ term Modulo 3: zeros every $4^{\text {th }}$ term

 Modulo 7: zeros every $8^{\text {th }}$ term $24^{\text {th }}$ term: 46368 $=2 \times 23184=3 \times 15456=7 \times 6624$ $25^{\text {th }}$ term: 75025 $\equiv 1 \bmod 2$ $\equiv 1 \bmod 3$ $\equiv 6 \bmod 7$
Finding Relative Primes

Modulo 2: zeros every $3^{\text {rd }}$ term
Modulo 3: zeros every $4^{\text {th }}$ term
Modulo 7: zeros every $8^{\text {th }}$ term
$24^{\text {th }}$ term: 46368
$=2 \times 23184=3 \times 15456=7 \times 6624$
$25^{\text {th }}$ term: 75025
$\equiv 1$ mod 2
$\equiv 1 \bmod 3$
$\equiv 6 \bmod 7$

Finding Relative Primes

Modulo 2: zeros every $3^{\text {rd }}$ term
Modulo 3: zeros every $4^{\text {th }}$ term
Modulo 7: zeros every $8^{\text {th }}$ term
$24^{\text {th }}$ term: 46368
$=2 \times 23184=3 \times 15456=7 \times 6624$
$25^{\text {th }}$ term: 75025
$\equiv 1 \bmod 2$
$\equiv 1 \bmod 3$
$\equiv 6 \bmod 7$

Finding Relative Primes

Modulo 2: zeros every $3^{\text {rd }}$ term
Modulo 3: zeros every $4^{\text {th }}$ term
Modulo 7: zeros every $8^{\text {th }}$ term
$24^{\text {th }}$ term: 46368
$=2 \times 23184=3 \times 15456=7 \times 6624$
$25^{\text {th }}$ term: 75025
$\equiv 1 \bmod 2$
$\equiv 1 \bmod 3$
$\equiv 6 \bmod 7$

Distribution of Primes

$$
\begin{gathered}
\pi(x) \sim \frac{x}{\log x} \\
P_{\text {prime }} \approx \frac{\frac{x}{\log x}}{x}=\frac{1}{\log x}
\end{gathered}
$$

Distribution of Fibonacci Numbers

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=\phi \\
F_{n} \approx c \phi^{n} \\
n \approx \frac{\log x}{\log \operatorname{const} .} \\
P_{\text {Fibonacci }} \approx \frac{\frac{\log x}{\operatorname{const.}}}{x}
\end{gathered}
$$

Probability of Both Prime and Fibonacci

$$
P_{\text {prime }} \cdot P_{\text {Fibonacci }}=\frac{1}{\log x} \cdot \frac{\log x}{x} \cdot \text { const. }=\frac{1}{x} \cdot \text { const } .
$$

Sum over all natural numbers

Sum over all primes

Sieve Theory

In conclusion, the Fibonacci primes appear to form an infinite set, but the argument is not valid since the sets are not independent.

The idea of using a matrix was to allow us to easily see the prime Fibonacci numbers. We started off by taking an array with the Fibonacci numbers on top and the primes on the side. Then filled the array with the Fibonacci numbers modulo the primes.

More Properties

$\begin{array}{llllllllll}2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 & \cdots\end{array}$
$\left.\begin{array}{lcccccccccc}2 \\ 3 \\ 5 \\ 7 \\ 11 \\ 13 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & \\ 17 & 0 & 2 & 2 & 1 & 0 & 1 & 1 & 2 & \\ 19 & 3 & 0 & 3 & 3 & 1 & 4 & 0 & 4 & \\ 2 & 3 & 5 & 1 & 6 & 0 & 6 & 6 & 5 & \\ 23 & 3 & 5 & 8 & 2 & 10 & 1 & 0 & 1 & \\ \vdots & 2 & 3 & 5 & 8 & 0 & 8 & 8 & 3 & 11 & \\ 2 & 3 & 5 & 8 & 13 & 4 & 0 & 4 & 4 & \\ 2 & 3 & 5 & 8 & 13 & 2 & 15 & 17 & 13 & \\ 2 & 3 & 5 & 8 & 13 & 21 & 11 & 9 & 20 & \\ \hline & & & & & & & & & \ddots\end{array}\right)$

We then reduced the array so that all the zeros on the diagonal represented the Prime Fibonacci numbers.

	2	3	5	8	13	21	34	55	89	\cdots
2										
3										
5	0	1	1	0	1	1	0	1	1	
11	2	0	2	2	1	0	1	1	2	
13	3	0	3	3	1	4	0	4		
29	3	5	8	2	10	1	0	1		
37	2	5	8	0	8	8	3	11		
59	2	5	8	13	21	5	26	2		
89	3	5	8	13	21	34	18	15		
\vdots	3	5	8	13	21	34	55	30		
2	3	5	8	13	21	34	55	0		

Then we created matrices from the array and looked at their properties

$$
A 3=\left(\begin{array}{lll}
0 & 1 & 1 \\
2 & 0 & 2 \\
2 & 3 & 0
\end{array}\right)
$$

Then we created matrices from the array and looked at their properties

$$
A 3=\left(\begin{array}{lll}
0 & 1 & 1 \\
2 & 0 & 2 \\
2 & 3 & 0
\end{array}\right)
$$ $\operatorname{det}(A 3)=10 \operatorname{rk}(A 3)=3$

Then we created matrices from the array and looked at their properties

$$
A 3=\left(\begin{array}{lll}
0 & 1 & 1 \\
2 & 0 & 2 \\
2 & 3 & 0
\end{array}\right)
$$

$\operatorname{det}(A 3)=10 \operatorname{rk}(A 3)=3$

Then we created matrices from the array and looked at their properties

$$
A 3=\left(\begin{array}{lll}
0 & 1 & 1 \\
2 & 0 & 2 \\
2 & 3 & 0
\end{array}\right)
$$

$\operatorname{det}(A 3)=10 \operatorname{rk}(A 3)=3$

$$
A 7=\left(\begin{array}{ccccccc}
0 & 1 & 1 & 0 & 1 & 1 & 0 \\
2 & 0 & 2 & 2 & 1 & 0 & 1 \\
2 & 3 & 0 & 3 & 3 & 1 & 4 \\
2 & 3 & 0 & 3 & 3 & 1 & 0 \\
2 & 3 & 5 & 8 & 2 & 10 & 1 \\
2 & 3 & 5 & 8 & 0 & 8 & 8 \\
2 & 3 & 5 & 8 & 13 & 21 & 5 \\
2 & 3 & 5 & 8 & 13 & 21 & 34
\end{array}\right)
$$

Then we created matrices from the array and looked at their properties

$$
A 3=\left(\begin{array}{lll}
0 & 1 & 1 \\
2 & 0 & 2 \\
2 & 3 & 0
\end{array}\right)
$$

$\operatorname{det}(A 3)=10 \operatorname{rk}(A 3)=3$

$$
A 7=\left(\begin{array}{ccccccc}
0 & 1 & 1 & 0 & 1 & 1 & 0 \\
2 & 0 & 2 & 2 & 1 & 0 & 1 \\
2 & 3 & 0 & 3 & 3 & 1 & 4 \\
2 & 3 & 0 & 3 & 3 & 1 & 0 \\
2 & 3 & 5 & 8 & 2 & 10 & 1 \\
2 & 3 & 5 & 8 & 0 & 8 & 8 \\
2 & 3 & 5 & 8 & 13 & 21 & 5 \\
2 & 3 & 5 & 8 & 13 & 21 & 34
\end{array}\right)
$$

$\operatorname{det}(A 7)=0$

Then we created matrices from the array and looked at their properties

$$
A 3=\left(\begin{array}{lll}
0 & 1 & 1 \\
2 & 0 & 2 \\
2 & 3 & 0
\end{array}\right)
$$

$\operatorname{det}(A 3)=10 \operatorname{rk}(A 3)=3$

$$
A 7=\left(\begin{array}{ccccccc}
0 & 1 & 1 & 0 & 1 & 1 & 0 \\
2 & 0 & 2 & 2 & 1 & 0 & 1 \\
2 & 3 & 0 & 3 & 3 & 1 & 4 \\
2 & 3 & 0 & 3 & 3 & 1 & 0 \\
2 & 3 & 5 & 8 & 2 & 10 & 1 \\
2 & 3 & 5 & 8 & 0 & 8 & 8 \\
2 & 3 & 5 & 8 & 13 & 21 & 5 \\
2 & 3 & 5 & 8 & 13 & 21 & 34
\end{array}\right)
$$

$\operatorname{det}(A 7)=0 \operatorname{rk}(A 7)=6$

Theorem
For all $N \geq 6, \operatorname{det}(A N)=0$.

As it turns out the last row is always a linear combination of the previous rows so,

$$
\begin{aligned}
& R N_{N}-R N_{N-1}=(0,0, \ldots 0, a, b) . \\
& a \neq 0 \text { iff } F_{N} \text { or } F_{N-1} \text { is a prime. }
\end{aligned}
$$

If the Fibonacci primes are finite
$\exists N$ such that all the Fibonacci primes are $\leq F_{N}$. Hence $\forall K>N$,

$$
A K=\left(\begin{array}{cc}
A N & * \\
* & B
\end{array}\right)
$$

Where $\operatorname{Tr} B=\sum_{i=N+1}^{K} F_{i}$

Conjecture

For all $N \geq 6, r k(A N)=N-1$.
A partial proof comes from the proof of the theorem. We have that $\operatorname{rk}(A N) \leq N-1$ for all $N \geq 6$.

Conjecture

For all $N \geq 6, r k(A N)=N-1$.
A partial proof comes from the proof of the theorem. We have that $\operatorname{rk}(A N) \leq N-1$ for all $N \geq 6$.

Thank you

