On the Prime Number Subset of the Fibonacci Numbers

Lacey Fish¹ Brandon Reid² Argen West³

¹Department of Mathematics Louisiana State University Baton Rouge, LA

²Department of Mathematics University of Alabama Tuscaloosa, AL

³Department of Mathematics University of Louisiana Lafayette Lafayette, LA

LSU. UA. ULL

Lacey Fish, Brandon Reid, Argen West

Basic Definitions

What is a sieve?

What is a sieve?

A sieve is a method to count or estimate the size of "sifted sets" of integers. Well, what is a sifted set? A sifted set is made of the remaining numbers after filtering.

<ロ> (四) (四) (日) (日) (日)

LSU. UA. ULL

Lacey Fish, Brandon Reid, Argen West

Basic Definitions

What is a sieve?

What is a sieve?

A sieve is a method to count or estimate the size of "sifted sets" of integers. Well, what is a sifted set? A sifted set is made of the remaining numbers after filtering.

LSU. UA. ULL

Lacey Fish, Brandon Reid, Argen West

Basic Definitions

History

Two Famous and Useful Sieves

- Sieve of Eratosthenes
- Brun's Sieve

LSU. UA. ULL

イロト イヨト イヨト イヨト

Lacey Fish, Brandon Reid, Argen West

- ▲ 문 → - ▲ 문

LSU. UA. ULL

Basic Definitions

History

Two Famous and Useful Sieves

- Sieve of Eratosthenes
- Brun's Sieve

Lacey Fish, Brandon Reid, Argen West

Basic Definitions

The Sieve of Eratosthenes

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

- E - - E

Basic Definitions

11 12 13 14 15 16 17 16 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 109 100 101 102 103 104 105 106 107 108 109 110		2	3	4	5	6	7	8	9	10	Pi
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	11	12	13	14	15	16	17	18	19	20	2
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 100 101 102 103 104 105 106 107 108 109 110	21	22	23	24	25	26	27	28	29	30	
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	31	32	33	34	35	36	37	38	39	40	
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	41	42	43	44	45	46	47	48	49	50	
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	51	52	53	54	55	56	57	58	59	60	
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	61	62	63	64	65	66	67	68	69	70	
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	71	72	73	74	75	76	77	78	79	80	
101 102 103 104 105 106 107 108 109 110	81	82	83	84	85	86	87	88	89	90	
	91	92	93	94	95	96	97	98	99	100	
111 112 113 114 115 116 117 118 119 120	101	102	103	104	105	106	107	108	109	110	
	111	112	113	114	115	116	117	118	119	120	

Prime numbers

Lacey Fish, Brandon Reid, Argen West

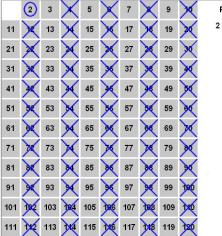
Sieve Theory

LSU, UA, ULL

æ

<ロ> <同> <同> < 同> < 同>

Basic Definitions

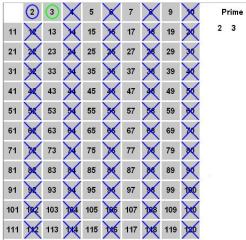


Prime numbers

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

Basic Definitions



Prime numbers

< 口 > < 🗗

* ヨト * ヨ

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

Basic Definitions



Prime numbers

< 口 > < 🗗

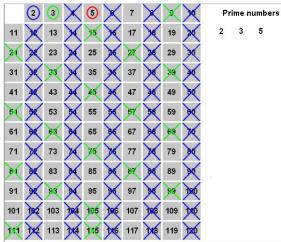
* ヨト * ヨ

2 3

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

Basic Definitions



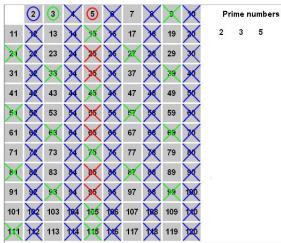
< 口 > < 🗗

★ E > ★ E

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

Basic Definitions



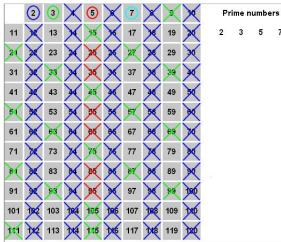
< 口 > < 🗗

* ヨト * ヨ

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

Basic Definitions



7

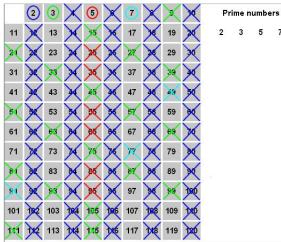
< 口 > < 🗗

* ヨト * ヨ

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

Basic Definitions



7

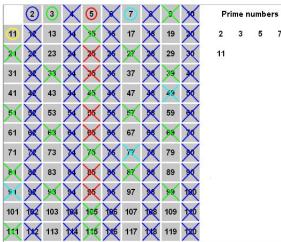
< 口 > < 🗗

* ヨト * ヨ

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

Basic Definitions



7

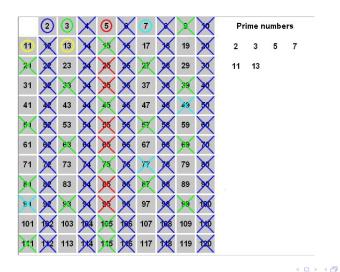
< 口 > < 🗗

* ヨト * ヨ

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

Basic Definitions

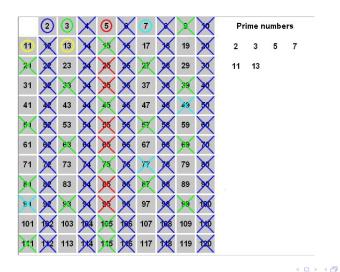


Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

Basic Definitions

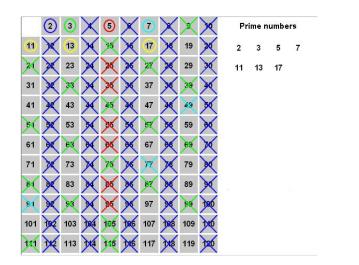


Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

Basic Definitions

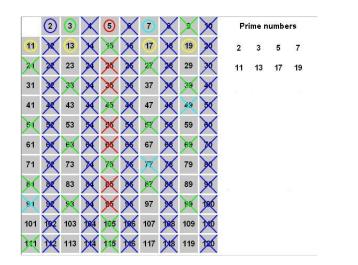


Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

Basic Definitions

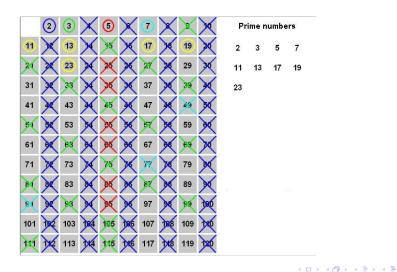


Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

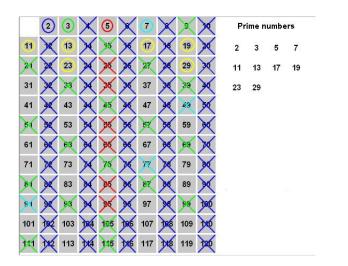
Basic Definitions



Lacey Fish, Brandon Reid, Argen West

Sieve Theory

Basic Definitions

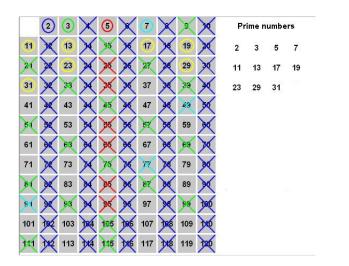


Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

Basic Definitions

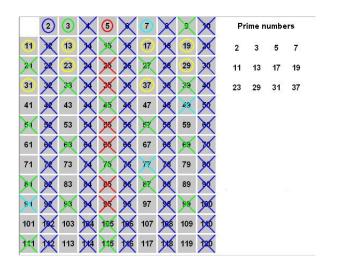


Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

Basic Definitions

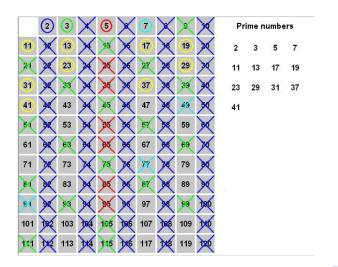


Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

Basic Definitions

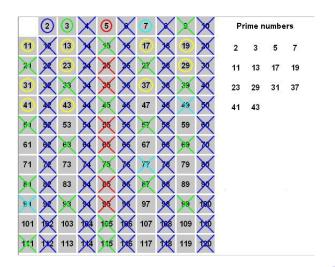


Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

Basic Definitions

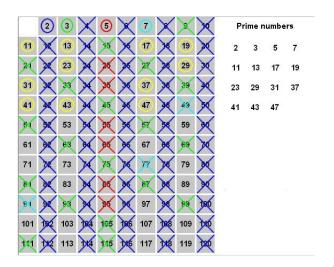


Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

Basic Definitions

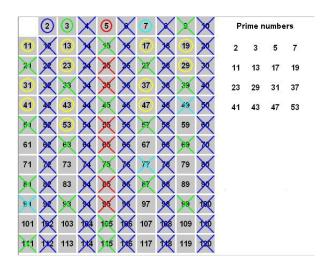


Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

Basic Definitions

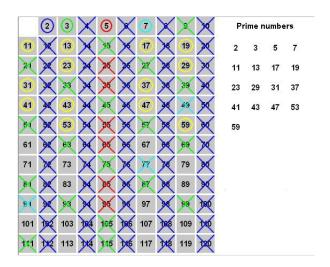


Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

Basic Definitions

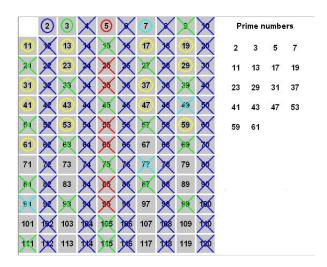


Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

Basic Definitions



Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

Basic Definitions



Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

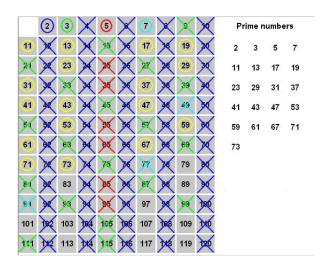
Basic Definitions

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

Basic Definitions

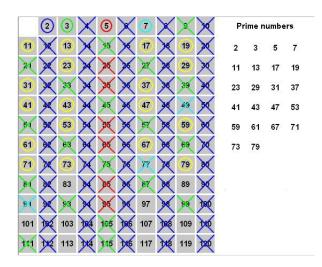


Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

Basic Definitions



Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

Basic Definitions

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

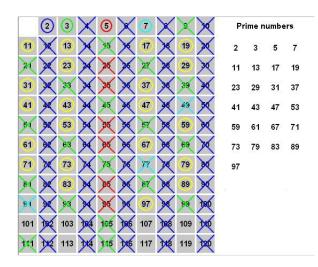
Basic Definitions

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

Basic Definitions

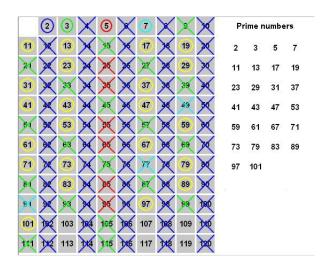


Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

Basic Definitions

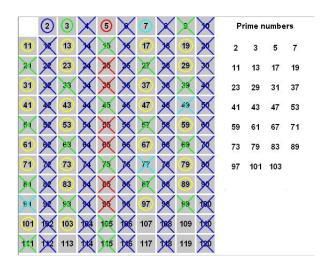


Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

Basic Definitions

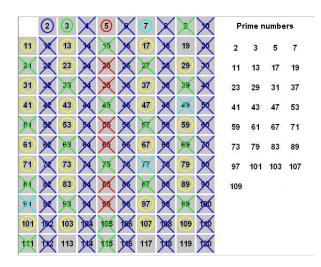


Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

Basic Definitions

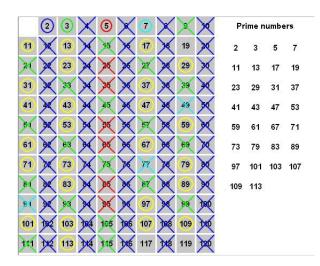


Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

Basic Definitions

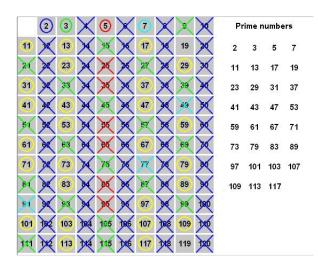


Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

Basic Definitions



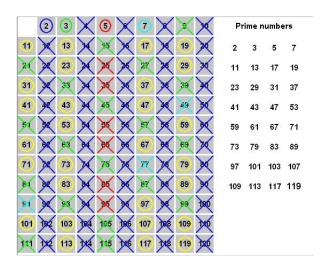
Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

프 🖌 🔺 프

Basic Definitions



Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

프 🖌 🔺 프

Basic Definitions

Brun Sieve

The Brun sieve is a generalized method compared to the Eratosthenes sieve. It allows us to sieve any set A with a designated set \mathcal{P} . It is formally stated as:

$$S(A, \mathcal{P}, z) = |A \setminus \bigcup_{p \in P(z)} A_p|$$

But what does that mean???

LSU, UA, ULL

Lacey Fish, Brandon Reid, Argen West

Basic Definitions

Brun Sieve

The Brun sieve is a generalized method compared to the Eratosthenes sieve. It allows us to sieve any set A with a designated set \mathcal{P} . It is formally stated as:

$$S(A, \mathcal{P}, z) = |A \setminus \bigcup_{p \in P(z)} A_p|$$

But what does that mean???

Lacey Fish, Brandon Reid, Argen West

Basic Definitions

Brun Sieve

The Brun sieve is a generalized method compared to the Eratosthenes sieve. It allows us to sieve any set A with a designated set \mathcal{P} . It is formally stated as:

$$S(A, \mathcal{P}, z) = |A \setminus \bigcup_{p \in P(z)} A_p|$$

LSU. UA. ULL

But what does that mean???

Lacey Fish, Brandon Reid, Argen West

Basic Definitions

For clarity, let us look at an example

We may take

$$A = \{5, 6, 10, 11, 12, 13, 18, 20, 22, 24, 28, 35\}$$

and

$$\mathcal{P} = \{2,7\}.$$

By sifting *A* with the given \mathcal{P} , we see

 $A_2 = \{6, 10, 12, 18, 20, 22, 24, 28\}, \text{ and } A_7 = \{28, 35\}$

We are left with $S(A, P, z) = |\{5, 11, 13\}| = 3$.

LSU. UA. ULL

Lacey Fish, Brandon Reid, Argen West

Basic Definitions

For clarity, let us look at an example

We may take

$$A = \{5, 6, 10, 11, 12, 13, 18, 20, 22, 24, 28, 35\}$$

and

$$\mathcal{P}=\{2,7\}.$$

By sifting A with the given \mathcal{P} , we see

 $A_2 = \{6, 10, 12, 18, 20, 22, 24, 28\}, \text{ and } A_7 = \{28, 35\}$

We are left with $S(A, P, z) = |\{5, 11, 13\}| = 3$.

・ロト・日本・モート ヨー うくの

LSU. UA. ULL

Lacey Fish, Brandon Reid, Argen West

Basic Definitions

For clarity, let us look at an example

We may take

$$A = \{5, 6, 10, 11, 12, 13, 18, 20, 22, 24, 28, 35\}$$

and

$$\mathcal{P} = \{2,7\}.$$

By sifting *A* with the given \mathcal{P} , we see

 $A_2 = \{6, 10, 12, 18, 20, 22, 24, 28\}, \text{ and } A_7 = \{28, 35\}$

ヘロト ヘ回ト ヘヨト ヘヨト

LSU. UA. ULL

. We are left with $S(A, P, z) = |\{5, 11, 13\}| = 3$.

Lacey Fish, Brandon Reid, Argen West

Basic Definitions

For clarity, let us look at an example

We may take

$$A = \{5, 6, 10, 11, 12, 13, 18, 20, 22, 24, 28, 35\}$$

and

$$\mathcal{P} = \{2,7\}.$$

By sifting *A* with the given \mathcal{P} , we see

 $A_2 = \{6, 10, 12, 18, 20, 22, 24, 28\}, \text{ and } A_7 = \{28, 35\}$

. We are left with $S(A, P, z) = |\{5, 11, 13\}| = 3$.

・ロット 「聞 ・ 「 川 マ ト (国 マ ト (国 マ くの

LSU. UA. ULL

Lacey Fish, Brandon Reid, Argen West

Basic Definitions

Other Brun Results

- Twin Prime Conjecture
- Goldbach Conjecture

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで

LSU. UA. ULL

Lacey Fish, Brandon Reid, Argen West

Basic Definitions

Other Brun Results

- Twin Prime Conjecture
- Goldbach Conjecture

LSU, UA, ULL

→ E → < E →</p>

Lacey Fish, Brandon Reid, Argen West

Basic Definitions

Twin Prime Conjecture

Conjecture

The Twin Prime Conjecture states that there are infinitely many primes p such that p+2 is also prime. An example is (5,7). This is an unproven conjecture at this point; however, Brun used his sieve to show that the sum of the recipricals converges.

Brun used his sieve to make progress on the conjecture by showing that there are infinitely many pairs of integers differing by 2, where each of the member of the pair is the product of at most 9 primes.

Basic Definitions

Twin Prime Conjecture

Conjecture

The Twin Prime Conjecture states that there are infinitely many primes p such that p+2 is also prime. An example is (5,7). This is an unproven conjecture at this point; however, Brun used his sieve to show that the sum of the recipricals converges.

Brun used his sieve to make progress on the conjecture by showing that there are infinitely many pairs of integers differing by 2, where each of the member of the pair is the product of at most 9 primes.

イロト イヨト イヨト イヨト

Basic Definitions

Twin Prime Conjecture

Conjecture

The Twin Prime Conjecture states that there are infinitely many primes p such that p+2 is also prime. An example is (5,7). This is an unproven conjecture at this point; however, Brun used his sieve to show that the sum of the recipricals converges.

Brun used his sieve to make progress on the conjecture by showing that there are infinitely many pairs of integers differing by 2, where each of the member of the pair is the product of at most 9 primes.

イロト イヨト イヨト イヨト

Basic Definitions

Goldbach Conjecture

This is one of the oldest unsolved problems in mathematics.

Conjecture

Every even integer greater than 2 is a Goldbach number, which is a number that can be expressed as two primes.

For example:

2 + 2 = 43 + 3 = 63 + 5 = 8.

Brun used his sieve to make progress on this conjecture as well. He showed that very even number is the sum of two numbers each of which is the product of at most a primes,

LSU. UA. ULL

Lacey Fish, Brandon Reid, Argen West

Basic Definitions

Goldbach Conjecture

This is one of the oldest unsolved problems in mathematics.

Conjecture

Every even integer greater than 2 is a Goldbach number, which is a number that can be expressed as two primes.

For example:

2+2=43+3=63+5=8.

Brun used his sieve to make progress on this conjecture as well. He showed that very even number is the sum of two numbers each of which is the product of at most a primes,

LSU. UA. ULL

Lacey Fish, Brandon Reid, Argen West

Basic Definitions

Goldbach Conjecture

This is one of the oldest unsolved problems in mathematics.

Conjecture

Every even integer greater than 2 is a Goldbach number, which is a number that can be expressed as two primes.

For example:

$$2 + 2 = 4$$

 $3 + 3 = 6$
 $3 + 5 = 8.$

Brun used his sieve to make progress on this conjecture as well. He showed that very even number is the sum of two numbers each of which is the product of at most a primes,

LSU. UA. ULL

Lacey Fish, Brandon Reid, Argen West

Basic Definitions

Goldbach Conjecture

This is one of the oldest unsolved problems in mathematics.

Conjecture

Every even integer greater than 2 is a Goldbach number, which is a number that can be expressed as two primes.

For example:

$$2+2=4$$

 $3+3=6$
 $3+5=8.$

Brun used his sieve to make progress on this conjecture as well. He showed that very even number is the sum of two numbers each of which is the product of at most a primes,

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

Basic Definitions

Goldbach Conjecture

This is one of the oldest unsolved problems in mathematics.

Conjecture

Every even integer greater than 2 is a Goldbach number, which is a number that can be expressed as two primes.

For example:

2+2=43+3=63+5=8.

Brun used his sieve to make progress on this conjecture as well. He showed that very even number is the sum of two numbers each of which is the product of at most 9 primes

LSU. UA. ULL

Lacey Fish, Brandon Reid, Argen West

The Famous Fibonacci Sequence

The Fibonacci Sequence is: F_n , defined by the recurrence relation:

$$F_n=F_{n-1}+F_{n-2}.$$

They have seed values of $F_0 = 0$ and $F_1 = 1$. The first few

terms are 1,1,2,3,5,8,13,21...

(日) (日) (日) (日) (日)

Lacey Fish, Brandon Reid, Argen West

The Famous Fibonacci Sequence

The Fibonacci Sequence is: F_n , defined by the recurrence relation:

$$F_n=F_{n-1}+F_{n-2}.$$

They have seed values of $F_0 = 0$ and $F_1 = 1$. The first few

terms are 1,1,2,3,5,8,13,21...

イロト イヨト イヨト イヨト

Brun Sieve and the Fibonacci Sequence

Let us take a finite amount of the Fibonacci sequence.

 $A = F_n = \{2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610\}$

and let $\mathcal{P} = \{2, 3, 5, 7, 11, ...\}$. After filtering using the set \mathcal{P} , the primes, we are left with

$$S(A, \mathcal{P}, z) = |\{2, 3, 5, 13, 89, 233\}| = 6$$

. These are the prime Fibonacci numbers within this given F_n .

LSU. UA. ULL

Lacey Fish, Brandon Reid, Argen West

Fibonacci Primes

A Fibonacci number that is prime. Their finiteness is unknown. It has been calculated that the largest known Fibonacci prime is F_{81839} , which has 17103 digits. It was proven to be such by Broadhurst and de Water in 2001.

LSU. UA. ULL

Lacey Fish, Brandon Reid, Argen West

Carmichael's Theorem

Theorem

Every Fibonacci number (aside from 1, 8, and 144) has at least one unique prime factor that has not been a factor of the preceding Fibonacci numbers.

.

LSU. UA. ULL

Lacey Fish, Brandon Reid, Argen West

0 1 1 2 3 5 8 13 21 34

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

Fibonacci sequence

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

→ E → < E</p>

Fibonacci sequence mod 7

$0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1, 1 \dots$

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

- ▲ 문 → - ▲ 문

Theorem

Let P be an arbitrary finite collection of primes. Then there exists a Fibonacci number that has no factors in P.

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

イロト イヨト イヨト イヨト

Finding Relative Primes

Modulo 2: zeros every 3rd term

Modulo 3: zeros every 4th term Modulo 7: zeros every 8th term 24th term: 46368 = 2 x 23184 = 3 x 15456 = 7 x 6624 25th term: 75025 \equiv 1 mod 2

- \equiv 1 mod 3
- $\equiv 6 \mod 7$

LSU. UA. ULL

Finding Relative Primes

Modulo 2: zeros every 3rd term Modulo 3: zeros every 4th term Modulo 7: zeros every 8th term 24th term: 46368 $= 2 \times 23184 = 3 \times 15456 = 7 \times 6624$ 25th term: 75025 $= 1 \mod 2$ $= 1 \mod 3$ $= 6 \mod 7$

Lacey Fish, Brandon Reid, Argen West

Image: A matrix

LSU. UA. ULL

Finding Relative Primes

Modulo 2: zeros every 3rd term Modulo 3: zeros every 4th term Modulo 7: zeros every 8th term 24th term: 46368 $= 2 \times 23184 = 3 \times 15456 = 7 \times 6624$ 25th term: 75025 $= 1 \mod 2$ $\equiv 1 \mod 3$ $= 6 \mod 7$

Lacey Fish, Brandon Reid, Argen West

Finding Relative Primes

Modulo 2: zeros every 3rd term Modulo 3: zeros every 4th term Modulo 7: zeros every 8th term 24th term: 46368 $= 2 \times 23184 = 3 \times 15456 = 7 \times 6624$ 25th term: 75025 $= 1 \mod 2$ $= 1 \mod 3$ $= 6 \mod 7$

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

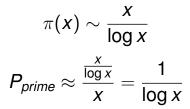
LSU, UA, ULL

Finding Relative Primes

Modulo 2: zeros every 3rd term Modulo 3: zeros every 4th term Modulo 7: zeros every 8th term 24th term: 46368 $= 2 \times 23184 = 3 \times 15456 = 7 \times 6624$ 25th term: 75025 $= 1 \mod 2$ $\equiv 1 \mod 3$

 \equiv 6 mod 7

Distribution of Primes

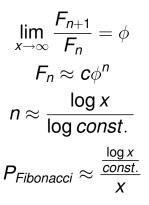


▲口▶▲圖▶▲≣▶▲≣▶ = のQ@

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

Distribution of Fibonacci Numbers



Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

< ロ > < 同 > < 臣 > < 臣

Probability of Both Prime and Fibonacci

$$P_{prime} \cdot P_{Fibonacci} = \frac{1}{\log x} \cdot \frac{\log x}{x} \cdot const. = \frac{1}{x} \cdot const.$$

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

< E > < E

Sum over all natural numbers

$\sum_{X} P_{(P \cap F)} \approx \sum_{X} \frac{1}{X} \to \infty$

▲ロト▲聞と▲臣と▲臣と 臣 のへで

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

Sum over all primes

$\sum_{p} P_{(P \cap F)} \approx \sum_{p} \frac{1}{p} \to \infty$

▲ロト▲御と▲臣と▲臣と 臣 のへぐ

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

In conclusion, the Fibonacci primes appear to form an infinite set, but the argument is not valid since the sets are not independent.

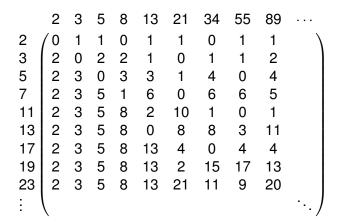
4 3 4 4 3

LSU. UA. ULL

Lacey Fish, Brandon Reid, Argen West

The idea of using a matrix was to allow us to easily see the prime Fibonacci numbers. We started off by taking an array with the Fibonacci numbers on top and the primes on the side. Then filled the array with the Fibonacci numbers modulo the primes.

More Properties



Lacey Fish, Brandon Reid, Argen West

Sieve Theory

We then reduced the array so that all the zeros on the diagonal represented the Prime Fibonacci numbers.

・ロト・四ト・ヨト・ヨー りゃぐ

LSU. UA. ULL

Lacey Fish, Brandon Reid, Argen West

	2	3	5	8	13	21	34	55	89	•••
2	/0	1	1	0	1	1	0	1	1	
3	2		2		1	0	1	1	2	
5	2	3	0	3	3	1	4	0	4	
11		3		8	2	10	1	0	1	
13	2	3	5	8	0	8	8	3	11	
29	2	3	5			21	5	26	2	
37	2	3	5		13	21	34	18	15	
59	2	3	5		13	21	34	55	30	
89	2	3	5	8	13	21	34	55	0	
÷										·)

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

<ロ> <四> <四> <三</p>

$$A3 = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 0 & 2 \\ 2 & 3 & 0 \end{pmatrix}$$

det(A3) = 10 rk(A3) = 3

< **□** > < **□**

LSU. UA. ULL

det(A7) = 0 rk(A7) = 6

Lacey Fish, Brandon Reid, Argen West

$$A3 = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 0 & 2 \\ 2 & 3 & 0 \end{pmatrix}$$

det(A3) = 10 rk(A3) = 3

det(A7) = 0 rk(A7) = 6

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

$$A3=egin{pmatrix} 0 & 1 & 1\ 2 & 0 & 2\ 2 & 3 & 0 \end{pmatrix}$$

det(A3) = 10 rk(A3) = 3

LSU. UA. ULL

det(A7) = 0 rk(A7) = 6

Lacey Fish, Brandon Reid, Argen West

$$A3 = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 0 & 2 \\ 2 & 3 & 0 \end{pmatrix}$$

det(A3) = 10 rk(A3) = 3

$$A7 = \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 2 & 0 & 2 & 2 & 1 & 0 & 1 \\ 2 & 3 & 0 & 3 & 3 & 1 & 4 \\ 2 & 3 & 0 & 3 & 3 & 1 & 0 \\ 2 & 3 & 5 & 8 & 2 & 10 & 1 \\ 2 & 3 & 5 & 8 & 0 & 8 & 8 \\ 2 & 3 & 5 & 8 & 13 & 21 & 5 \\ 2 & 3 & 5 & 8 & 13 & 21 & 34 \end{pmatrix}$$

$$det(A7) = 0 rk(A7) = 6$$

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

<ロ> <同> <同> < 同> < 同>

$$A3 = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 0 & 2 \\ 2 & 3 & 0 \end{pmatrix}$$

det(A3) = 10 rk(A3) = 3

$$A7 = \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 2 & 0 & 2 & 2 & 1 & 0 & 1 \\ 2 & 3 & 0 & 3 & 3 & 1 & 4 \\ 2 & 3 & 0 & 3 & 3 & 1 & 0 \\ 2 & 3 & 5 & 8 & 2 & 10 & 1 \\ 2 & 3 & 5 & 8 & 0 & 8 & 8 \\ 2 & 3 & 5 & 8 & 13 & 21 & 5 \\ 2 & 3 & 5 & 8 & 13 & 21 & 34 \end{pmatrix}$$

$$det(A7) = 0 rk(A7) = 6$$

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

<ロ> <同> <同> < 同> < 同>

$$A3 = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 0 & 2 \\ 2 & 3 & 0 \end{pmatrix}$$

det(A3) = 10 rk(A3) = 3

$$A7 = \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 2 & 0 & 2 & 2 & 1 & 0 & 1 \\ 2 & 3 & 0 & 3 & 3 & 1 & 4 \\ 2 & 3 & 0 & 3 & 3 & 1 & 0 \\ 2 & 3 & 5 & 8 & 2 & 10 & 1 \\ 2 & 3 & 5 & 8 & 0 & 8 & 8 \\ 2 & 3 & 5 & 8 & 13 & 21 & 5 \\ 2 & 3 & 5 & 8 & 13 & 21 & 34 \end{pmatrix}$$

$$det(A7) = 0 rk(A7) = 6$$

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

LSU, UA, ULL

イロト イヨト イヨト イヨト

Theorem

For all $N \ge 6$, det(AN) = 0.

◆□ > ◆□ > ◆豆 > ◆豆 > ◆豆 - 釣 < ⊙

Lacey Fish, Brandon Reid, Argen West

Sieve Theory

As it turns out the last row is always a linear combination of the previous rows so,

$$RN_N - RN_{N-1} = (0, 0, ...0, a, b).$$

 $a \neq 0$ iff F_N or F_{N-1} is a prime.

イロン イヨン イヨン イヨン

Lacey Fish, Brandon Reid, Argen West

If the Fibonacci primes are finite $\exists N$ such that all the Fibonacci primes are $\leq F_N$. Hence $\forall K > N$,

$$AK = \begin{pmatrix} AN & * \\ * & B \end{pmatrix}$$

Where $TrB = \sum_{i=N+1}^{K} F_i$

LSU, UA, ULL

Lacey Fish, Brandon Reid, Argen West

Conjecture

For all $N \ge 6$, rk(AN) = N - 1.

A partial proof comes from the proof of the theorem. We have that $rk(AN) \le N - 1$ for all $N \ge 6$.

イロト イヨト イヨト イヨト

LSU. UA. ULL

Lacey Fish, Brandon Reid, Argen West

Conjecture

For all $N \ge 6$, rk(AN) = N - 1.

A partial proof comes from the proof of the theorem. We have that $rk(AN) \le N - 1$ for all $N \ge 6$.

<ロ> <同> <同> < 同> < 同>

LSU. UA. ULL

Lacey Fish, Brandon Reid, Argen West

Thank you

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ 三 − つへぐ

Lacey Fish, Brandon Reid, Argen West

Sieve Theory