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Abstract. It is unknown whether or not there are an infinite
number of primes in the Fibonacci sequence, although there has
been much study on the topic. For example, it has been shown that
Fn∣Fan for any natural number a. Another important discovery
is that the Fibonacci sequence is periodic for a modulus of any
base. Moreover, Marc Renault has published an in-depth study
of the behavior of the Fibonacci sequence in modular arithmetic,
and demonstrated that the sequence has exactly one, two, or four
zeros per period regardless of which base is chosen; it has also
been shown that each term in the Fibonacci sequence has a prime
factor that has not previously shown up in the sequence. Despite
these discoveries, the question of whether the Fibonacci sequence
contains an infinite number of primes remains unanswered. Our
project sets out to explore this in greater depth by using sieve
methods, specifically the Brun sieve. These sieve ideas will be
extended to a probabilistic approach, and we conclude with a linear
algebraic approach using matrices built from sieved sets.

1. Sieve Theory

1.1. The Sieve of Eratosthenes. A sieve is a method to count or
estimate the size of ”sifted sets” of integers. These sets consist of
the numbers that remain after the rest have been ”filtered” out. The
classic example is the sieve of Eratosthenes, an algorithm for finding
all prime numbers less than a given integer. This method only works
for small integers. It was thought to have been created by an ancient
Greek, Eratosthenes, who lived around 250 B.C. The basic concept
behind his sieve is to filter the prime numbers out of a finite list of
consecutive integers. Eratosthenes’ sieve does this by taking the list
from 2 to n, and then letting the initial prime number, denoted p1, be
equivalent to the first prime number, 2. Then, using p1, strike every
multiple of p1 from the finite list of consecutive integers. Now take
the next number on the list that has not been struck through. This is
the next prime number, denoted p2. Repeat the process listed above.
In the Eratosthenes sieve, repeat this process until p2k is greater than
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n. Every number that has not been struck off that is left is a prime
number.

The remarks above gives us this expression of numbers: �(n)−�(n
1
2 )

of primes denoted p, satisfying n
1
2 < p ≤ n. In this case, �(x) is the

prime counting function, which is the function that counts the number
of primes less than or equal to some real number x. His principle can
also be expressed by:

1 + �(n)− �(n
1
2 ) =

∑
a≤n

s(0)(a).

In this expression, the ”sifting function” is defined by

s(0)(a) =

{
1 if a is not divisible by any prime p ≤ n

1
2 ,

0 if a is divisible by some prime p ≤ n
1
2 .

As was previously stated, the sieve of Eratosthenes works well for
smaller numbers, but as the sets grow larger so does the error terms
for the estimates. Modern mathematicians have tried to combat this
occurence by developing more refined sieve methods. One of these
methods is the Brun sieve, which ahs been shown to be useful when
focused on certain intractible problems in prime number theory.

1.2. Brun’s Sieve. Viggo Brun was a twentieth century, Norwegian
mathematician. He lived from 1885-1978 and attended the University
of Oslo, where he eventually settled as a professor. He created the Brun
sieve method based on the sieve of Eratosthenes to use on additive
problems in 1915. He used this method to prove that there exists
infinitely many integers n such that n and n + 2 have at most nine
prime factors, and that all large, even integers are the sum of two
”nine-almost primes.” A k-almost prime is a natural number that has
exactly k prime factors, counted with multiplicity. A number n is k-
almost prime if and only if Ω(n) = k, where Ω(n) is the number of
primes in the prime factorization of n. A number is prime in the usual
sense of the word if it is 1-almost prime.

The Brun sieve is a method for estimating the size of a sifted set of
positive integers that satisfy conditions expressed by congruence. Con-
gruence refers to an equivalence relation that is based on an algebraic
structure that is compatible with the structure. This sieve is a combi-
natorial type, meaning it is derived from use of the inclusion-exclusion
principle. This principle states that if A and B are two finite sets, then
the following is true:

∣A ∪B∣ = ∣A∣+ ∣B∣ − ∣A ∩B∣.
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We must let A = {x ∈ ℕ x ≤ n, some n} and let P be a set of
primes. For all p ∈ P , we let Ap represent the set of elements in A
properly divisible by p, more formally Ap = {x ∈ A x = kp, k ∕= 1}.
For d = p1 ⋅ ⋅ ⋅ pn, we extend this to let Ad the intersection of the Ap
for p dividing d, when d is a product of distinct primes from P . To be
more rigorous, , let Ad = ∩ni=1Api . It is clear that only a finite number
of primes are needed to sieve a finite set of integers. Suppose z is the
largest prime needed, then let P (z) be the set of all primes less than
or equal to z. Then we can formally state

S(A,P , z) = ∣A∖
∪

p∈P (z)

Ap∣

We recall that ∣Ad∣ may be thought of as a divisor function, i.e.
a function of the prime divisors of d. Because divisor functions are
multiplicative, we define w(d) to be a multiplicative function such that

∣Ad∣ =
w(d)

d
X +Rd

where X = ∣A∣ and Rd is a remainder.We may use this simple example
to demonstrate the Brun sieve. Let us take

A = {2, 5, 6, 7, 10, 11, 12, 13, 18, 20, 22, 24, 28, 35}

and

P = {2, 4, 10}.
Then we can see, by sifting the given A with the given P that

A2 = {6, 10, 12, 18, 20, 22, 24, 28},

A4 = {12, 20, 24, 28},
A10 = {20}.

The following estimates and formulations concerning the Brun sieve
can be found in [3], chapter 6.

Theorem 1.1. (Theorem 6.12, [3])We keep the above notation and
have 3 further hypotheses:

(1) ∣Rd∣ ≤ w(d) for all squarefree d composed of elements of P (z)
(2) there exists a positive constant C such that w(p) < C for any

p ∈ P (z)
(3) there exists positive constants C1, C2 such that∑

p∈P (z)

w(p)

p
< C1 log log z + C2
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Then S(A,P, z) = XW (z)(1 + O((log z)−A)) + O(z� log log z) with A =

� log � and W (z) = ΠpP (z)(1 − w(p)
p

). In particular, if log z ≤ c log x
log log x

for a suitable positive constant c that is sufficiently small, then we have
S(A,P , z) = XW (z)(1 + o(1)).

2. The Fibonacci Sequence

The Fibonacci Sequence is a sequence of numbers, Fn, that are de-
fined by the reoccurring relation:

Fn = Fn−1 + Fn−2.

They have seed values of F0 = 0 and F1 = 1. The Fibonacci sequence
is found and used in several fields, from finances to nature.

We will look at specific Fibonacci numbers, the Finbonacci primes.
As the name suggests, a Fibonacci prime is a Fibonacci number that is
prime. It is unknown if there is a finite or infinite number of Fibonacci
primes. Fibonacci numbers that have a prime index of p have no com-
mon divisors greater than or equal to one with its preceding Fibonacci
numbers because of the following identity:

GCD(Fp, Fm) = FGCD(n,m),

for n ≥ 3,with Fn dividing Fm if and only if n divides m. If we let m
be a prime number p that is greater than n, then Fp may not share any
common divisors with any preceding Fibonacci numbers. This will be
shown later in this paper. The American mathematician, Carmichael,
gives us his theorem that states for n > 12, the nth Fibonacci number
(Fn) has at least one prime factor that is not a factor of any previous
Fibonacci number.

(1) Applying the Brun sieve to the Fibonacci sequence.
To use this method, the three conditions set forth in the

description of the theorem must first be satisfied.
(a) ∣Rd∣ ≤ !(d) ∀ squarefree d composed of primes P . If d is square-

free, then !(d) = !(p1), !(p2), ..., !(pk) because ! is multiplica-
tive. Since !(d) is approximating a counting function, we can
choose it so that this criterion is met.

(b) ∃C ≥ 0 such that !(p) < C ∀p ∈ P . In the case of the Fibonacci
numbers, ∣P∣ = �(Fn) where Fn = max{ℱ}. We created this
function to tell us how many primes were needed to fully sieve
the first n Fibonacci numbers. We let this function be �(Fn).

We define �(Fn) = p, where p is the index of largest prime
needed to sieve ℱ completely. For example, if we wish to sieve
the first 8 non-trivial Fibonacci numbers, {2, 3, 5, 8, 13, 21, 34, 55},
we need to sieve with {2, 3, 5, 13}, so �(55) = 6 since 55 is the
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10tℎ Fibonacci number and 13 is the 6tℎ prime number. We give
the following table of small values of lambda:

Fn 2 3 5 8 13 21 34 55 89 144 233 377
�(n) 1 2 3 3 6 6 6 6 24 24 51 51

(c) ∃C1, C2 ≥ 0 such that∑
p<z,p∈P

!(p)

p
< C1 log log (z) + C2.

Because we are sieving with a finite list of the Fibonacci num-
bers, we know that the sum will be finite, so ∃C1, C2 for which
this condition is true.

We may now apply Brun’s sieve to the Fibonacci sequence,
because we know all of the conditions are satisfied. We recall

S(A,P , z) = ∣A∖
∪

p∈P (z)

Ap∣

. In the case of the Fibonacci sequence, we must replace A
with Fn, the Fibonacci sequence. We also let P be equivalent
to all prime numbers. To truly apply the Brun sieve, we must
only take a finite section of the Fibonacci sequence. Our refined
sieve may be stated as such:

S(Fn,P , z) = ∣Fn∖
∪

p∈P (z)

Fp∣.

We take
Fn = 2, 3, 5, 8, 13, 21, 34, 55.

In this case, to completely sieve it, we must take P = {p p ≤
�(55), p prime}. Using this many primes assures that every
Fibonacci number in the list will appear in at least one Ap.

F2 = {8, 34}
F3 = {21}
F5 = {55}
F7 = {21}
F11 = {55}
F13 = ∅.

We may stop there because every term in Fn has been sifted.
This gets more difficult as we progress down the Fibonacci se-
quence, because it gets very large very rapidly, and so does the
number of primes required to sift it.



6 LACEY FISH, BRANDON REID, AND ARGEN WEST

So we have that

S(Fn,P , z) = ∣{2, 3, 5, 13}∣ = 4

.

3. More Fibonacci Primes

In this section, we will begin to look at the Fibonacci number modulo
a prime in order to study prime Fibonacci numbers. Recall that it has
been shown in [6] that the Fibonacci sequence is periodic modulo any
integer, which clearly includes the primes. We begin with a useful
lemma.

Lemma 3.1. If Fn is the ntℎ term of the Fibonacci sequence, then
(Fn+1, Fn) = 1 for all n.

Proof. Assume not. Then there exists some pair of adjacent terms share
a common factor: Fn+1 = kl; Fn = km. Then Fn−1 = Fn+1 − Fn =
k(l−m). Repeating the argument for Fn−2, Fn−3, . . . , F2, we see that
F1 = kj for some j. But F1 = 1 and hence k = 1. This contradicts
the assumption that k > 1 and hence the assumption is false. Thus,
(Fn+1, Fn) = 1 for all n. □

Theorem 3.2. (Carmichael) For all n > 12, there exists a prime pn
such that Fn ≡ 0 mod pn and Fm ∕≡ 0 mod pn for all m < n.

Proof. [2] □

Theorem 3.3. Let P = {P} be an arbitrary finite collection of primes.
Then there exists a Fibonacci number that has no factors in P .

Proof. The Fibonacci sequence is periodic modulo p for any arbitary
prime [6]. More specifically, the sequence has a period q < p2 because
once the sequence repeats two consecutive terms, the periodicity follows
since each number is based only on the last two terms. There are only p
choices for a number modulo p in each of these slots, and the sequence
0, 0 is invalid, since all terms would be 0, which is clearly not the case.
Note that as the sequence begins to repeat, the qtℎ term is 0 and and
q + 1tℎ term is 1.

Now, suppose that for the list of primes p1, p2, ...pn, you have the
corresponding lists of periods q1, q2, ...qn. Now let d = lcm(q1, . . . , qn).

The dtℎ term of the Fibonacci sequence is necessarily a multiple of all
primes in the list, that is, Fd ≡ 0 mod p for all p. Now, the Fibonacci
sequence is periodic for all primes in the sequence, and the sequences for
all the primes are, at this point, starting over. Thus, Fd+1 ≡ 1 mod p
for all p and a Fibonacci number relatively prime to all numbers in the
list has been found. □
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The prime numbers and the Fibonacci numbers are both infinite sets.
We would like to see if their intersection also forms an infinite set, but
first we will examine each alone.

For the prime numbers, it is accepted that if �(X) is the number
of primes less than x, then �(x) ∼ x

lnx
, that is, the number of primes

less than or equal to x is asymptotic to x
lnx

. From this, we see that the
probability that a random integer in the interval [1, x] has a probability

Pprime =
x

lnx

x
=

1

lnx

of being prime, for large x.
Similarly, we can find the probability that a random integer in the

interval [1, x] appears in the Fibonacci sequence. Using the fact that

lim
x→∞

Fn+1

Fn
= �, where � =

1+
√

(5)

2
denotes the golden ratio, we can find

a good approximation of the Fibonacci sequence; specifically, Fn = c�n

(c ≈ .4472). Solving for n we find the number of Fibonacci numbers
below an arbitrary number: n ≈ lnFn

ln� + ln c
. Similarly, if we are not given

the greatest Fibonacci number in our range but are given a number x,
we can use the same approximation since x is naturally on the order
of the highest Fibonacci number Fn below it (more specifically, x is no
greater than �Fn).

Thus, n ≈ lnx
ln� + ln c

, or simply n ≈ lnx
ln�

for large x. Thus, the proba-

bility of selecting a Fibonacci number by randomly choosing an integer
in the interval [1, x] is

PFibonacci =

lnx
ln�

x
for large x.

Now, it is possible to analyze the intersection of the sets. If the prime
numbers and the Fibonacci numbers are independent, we can find the
probability that a random integer in the [1, x] range is both prime and
Fibonacci by simply multiplying the probabilities:

P(P∩F ) = Pprime ⋅ PFibonacci =
1

lnx
⋅ lnx

x ln�
=

1

x ln�

This sum clearly diverges, as ln� is simply a constant: ln� ≈ .4812
and the remaining term, when summed from one to infinity, is sim-
ply the harmonic series. Thus,

∑
P(P∩F ) → ∞ and we expect there

to be an infinite number of primes from this probabilistic argument.
However, there is a slight flaw in this argument as choosing an inte-
ger in F and choosing an integer in P are not, in fact, independent
events probabilistically. For instance, for any composite n ∕= 4, Fn is
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not prime. This restriction does not, however, apply to prime n so it
might be reasonable to analyze the probability for only prime n instead
of all the integers. The sum

∑
x

P(P∩F ) = 1
x ln�

still diverges, because

the sum
∑
p

1
p

still diverges. This is an indication that the number of

Fibonacci primes is, in fact, infinite, but since choosing numbers from
the Fibonacci and prime sets are still not independent events, this does
not constitute a complete proof.

4. The Matrix Approach

We proceed now by creating a matrix that will allow us to easily iden-
tify Fibonacci primes. If we create an infinite array with the Fibonacci
numbers labeling the columns and the primes labeling the rows, then
fill the array by reducing the Fibonacci numbers modulo the the prime
numbers. The result is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 3 5 8 13 21 34 55 89 ⋅ ⋅ ⋅
2 0 1 1 0 1 1 0 1 1
3 2 0 2 2 1 0 1 1 2
5 2 3 0 3 3 1 4 0 4
7 2 3 5 1 6 0 6 6 5
11 2 3 5 8 2 10 1 0 1
13 2 3 5 8 0 8 8 3 11
17 2 3 5 8 13 4 0 4 4
19 2 3 5 8 13 2 15 17 13
23 2 3 5 8 13 21 11 9 20
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The reader may notice that once a Fibonacci number appears in a
column, every number below that entry is the same Fibonacci number.
With this in mind, no information is lost if we ignore all the entries
below the first appearance of a Fibonacci number, and the first ap-
pearance of the next Fibonacci number in the column immediately to
the right. Algorithmically, one can enumerate the primes p1, . . . , and
compare the ntℎ prime with the F(n − 2) (the index on the Fibonacci
number has to be shifted since the array ignores F1 = F2 = 1). When
the first n is found such that pn < Fn−2, that row is deleted. Now
reenumerate the remaining primes, and repeat the first step. Finally,
one can simply consider the array as a matrix, as we do here.
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When this sieving process is completed, we have the following ma-
trix, with the labels still shown for clarity.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 3 5 8 13 21 34 55 89 ⋅ ⋅ ⋅
2 0 1 1 0 1 1 0 1 1
3 2 0 2 2 1 0 1 1 2
5 2 3 0 3 3 1 4 0 4
11 2 3 5 8 2 10 1 0 1
13 2 3 5 8 0 8 8 3 11
29 2 3 5 8 13 21 5 26 2
37 2 3 5 8 13 21 34 18 15
59 2 3 5 8 13 21 34 55 30
89 2 3 5 8 13 21 34 55 0
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Notice, by reducing the array as we did, all the prime Fibonacci num-

bers are represented by a zero on the diagonal. Every nonzero main
diagonal entry is the Fibonacci number indexed by the column label.
Furthermore, every subdiagonal is exactly the Fibonacci sequence.
To use any linear algebraic tools on these matrices, we must consider
only finite submatrices.

Definition 4.1. Let AN be the N×N submatrix of the above infinite
matrix, that consists of the first N rows and first N columns. For
notation purposes, let RNk denote the ktℎ row of AN and let AN(i,j)

denote the (i, j)tℎ position of AN . In the case of varying N , parantheses
will be used. For instance, A(N + 1) is the similarly defined (N + 1)×
(N + 1) matrix.

Example 4.2. We give a few of the matrices here, with their determi-
nants and ranks.

A3 =

⎛⎝0 1 1
2 0 2
2 3 0

⎞⎠
det(A3) = 10 rk(A3) = 3
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A4 =

⎛⎜⎜⎝
0 1 1 0
2 0 2 2
2 3 0 3
2 3 5 8

⎞⎟⎟⎠
det(A4) = 60 rk(A4) = 4

A7 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 1 1 0
2 0 2 2 1 0 1
2 3 0 3 3 1 4
2 3 0 3 3 1 0
2 3 5 8 2 10 1
2 3 5 8 0 8 8
2 3 5 8 13 21 5
2 3 5 8 13 21 34

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
det(A7) = 0 rk(A7) = 6

Theorem 4.3. For all n ≥ 6, det(AN) = 0.

Proof. We proceed by induction on N . Let N = 6, then a few moments
with A6 will yield

R66 = R65 +
13

2
(R64 −R65)

Hence the rows are not linearly independent and therefore det(A6) = 0.

Assume det(AN) = 0 for allN/leqK. Then we haveAKk =
∑K−1

i=1 ciRKi

for some constants ci. Consider now the linearly combination of rows

(R(K + 1)k −
K−1∑
i=1

ciR(K + 1)i) ⋅
b

a
+R(K + 1)k

where a =
∑K−1

i=1 ciA(K + 1)(i,K+1) and b = A(K + 1)(K+1,K+1) −∑K−1
i=1 ciA(K + 1)(i,K+1).
We see that this linear combination trivially gives the first K entries

of R(K + 1) by the construction of AN . Namely, that each row is
exactly equal to the previous row under the main diagonal. Hence, we
only need to check what the combination gives us in the last position.
To simplify notation, let P = A(K+1)(K,K+1), Q = A(K+1)(K+1,K+1)

and R =
∑K−1

i=1 ciA(K+1)(i,K+1). Then the linearly combination above,
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applied to the (k + 1)st column is

(P −R) ⋅ Q−R
P −R

+R

This easily simplifies to Q, which is A(K + 1)(K+1,K+1), exactly the
value we desire and in the correct position. Hence we have that the
(K + 1)st row is a linear combination of the previous rows, and thus,
det(A(K + 1)) = 0 as required. □

Since one row in AN where N ≤ 6 is a linear combination of the
others, a viable conjucture would be rank(AN) ≤ N − 1.

Theorem 4.4. For all N > 3 , we have that RNN − RNN−1 =
(0, 0, ...0, a, b). Furthermore, a ∕= 0 if and only if either FN or FN−1
are prime.

Proof. We have a couple of cases to consider that will not be formally
separated as the setup is the same for each case. First suppose the
the Fibonacci number labeling the column, Fj, is not prime. Then
the diagonal entry associated with that row is nonzero, and is in fact
exactly the Fibonacci number labeling the column. Furthermore, by
construction, AN(j,j−1) = Fj−1. This clearly holds true for the N tℎ

column of AN if FN isn’t prime, so this is where we focus our attention.
Again by construction, AN(N,N) = FN , andAN(N,N−1) = FN−1. If FN−1
is not prime, then AN(N−1,N−1) = FN−1 and hence RNk − RNk−1 =
(0, 0, ...0, a, b) where a = 0. If either FN or FN−1 are prime, then that
diagonal entry is 0, and hence a ∕= 0, thus completing the proof. □

We note the following important fact that is the driving force behind
the development of AN . If the Fibonacci primes are finite, there exists
an N such that all the Fibonacci primes are less than or equal to FN .
Hence for all K > N ,

AK =

(
AN ∗
∗ B

)
Where trB =

∑K
i=N+1 Fi. I.e., the matrix B has no zeros on the

main diagonal, since all the Fibonacci primes occured prior to FN .
The goal is that one could use the fact that all the determinants are
0 after N = 5, coupled together with the finite number of zeros on
the main diagonal, and the number of zeros occuring in each row as
mentioned in the introduction (1,2, or 4 zeros per period), to reach a
possible contradiction to the finiteness of Fibonacci primes.
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We end with a conjecture that may help in the aforementioned de-
sired contradiction. Experimental data has shown the following.

Conjecture 4.5. For all N ≥ 6, rk(AN) = N − 1.

5. Conclusion

We have shown that Brun’s sieve can be applied to the Fibonacci
sequence to get estimates of the density of prime Fibonacci numbers.
We have also taken a probabilistic approach that, with some refining,
could lead to either a probability of 0 of a large Fibonacci number being
prime, or a nonzero probability. Either conclusion would be extremely
meaningful, and would likely lead to even more questions. Finally, in
the matrix approach, we developed the framework one might use to find
a contradiction in the assumption that Fibonacci primes are finite. If
they are finite, we have a matrix of the form

AK =

(
AN ∗
∗ B

)
where B has no zeros on the main diagonal, but det(AK) = 0. The
trick could be wrapped up in matrix partitions, as someone may dis-
cover.

Since the Fibonacci numbers have been studied in great detail, and
the prime numbers in even greater detail, it is safe to say that any
problem involving the intersection of the two sets that has remained
unsolved into modern times is a difficult one. We hope to have shed a
little light on the problem, and maybe to have developed some novel
new ways of approaching it.

References

[1] Apostol, T, ”Introduction to Analytic Number Theory”, Springer Verlag, 1976.
[2] Carmichael, R. D. (1913), ”On the numerical factors of the arithmetic forms

�n + �n”, Annals of Mathematics (Annals of Mathematics) 15 (1/4): 3070.
[3] Cocojaru, A., Murty, M., ”An Introduction to Sieve Methods and their Appli-

cations”, New York Cambridge University Press, 2005.
[4] Halberstam, H., Roth, K. F., ”Sequences”, Springer, 1983.
[5] Knott, Ron. ”The First 300 Fibonacci Numbers, Factored.”

Mathematics - University of Surrey - Guildford. June 2001.
Web. 28 June 2010. http://www.maths.surrey.ac.uk/hosted-
sites/R.Knott/Fibonacci/fibtable.html

[6] Wall, D. D. ”Fibonacci Series Modulo m.” Amer. Math. Monthly 67, 525-532,
1960.

Mathematics Department, Louisiana State University, Baton Rouge,
Louisiana


