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Abstract

We will demonstrate the utility of Monte Carlo integration by using
this algorithm to calculate an estimate for �. In order to improve
this estimate, we will also demonstrate how a family of covariate
functions can be used to reduce the variance of this estimate.
Finally, the optimal covariate function within this family is found
numerically.
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An Introduction to Monte Carlo Integration

Monte Carlo Integration is a method for approximating integrals
related to a family of stochastic processes referred to as Monte
Carlo Simulations. The method relies on the construction of a
random sample of points so outputs are non-unique; however,
these outputs probabilistically converge to the actual value of the
integral as the number of sample points is increased.
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An Introduction to Monte Carlo Integration

Since its development, Monte Carlo Integration has been used to
evaluate many problems which otherwise become computationally
inefficient or unsolvable by other methods. This process shows
particularly useful in higher dimensions where the error found from
other numerical methods grows too large.
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The Monte Carlo Algorithm

To evaluate I =
∫ b
a f (x) dx by Monte Carlo Integration, first

generate a sequence of N uniformly distributed random variables
within the interval. That is, create Xi ∼ U[a, b] and let Yi = f (Xi )
for 1 ≤ i ≤ N.

{X1,X2, ...,XN} → {Y1,Y2, ...,YN}

and take

(b − a)
N∑
i=1

Yi

N

as an approximation for I .
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The Monte Carlo Algorithm

So given a particular function f (x) and interval [a, b], one can only
control the size of the sequence generated, N, since the elements
are randomly generated. Note that unlike deterministic methods
(i.e. Simpson’s Rule, Trapezoidal Rule), the estimate is liable to
change with a particular N. One should also note, that similar to
other methods, larger values of N yield better approximations.
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The Monte Carlo Algorithm

We encounter similar methods throughout our daily lives. For
example, voting is a simple discrete form of Monte Carlo
integration where we attempt to measure a population’s interest by
collecting a sample of this population. The accuracy of a poll is
often judged by the size and the distribution of the sample.
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The Monte Carlo Algorithm

An example of this process is tossing rocks into a circular pond for
an estimation of �. If we enclose a circular pond of radius r = 1
with a square having sides of length 2, we will see that
Asquare ∗ n

N ≈ � where n is the number of rocks in the pond and N
is the number of rocks within the square.

http://www.eveandersson.com/pi/monte-carlo-demo
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Derivation

Definition

For any continuous random variable X ∼ �(X ) and Y = f (X ), the
expected value of Y is defined as:

E [Y ] = E [f (X )] =

∫ ∞
−∞

f (x)�(x) dx .
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Derivation

If we take �(x) to be the uniform probability density function on
[a, b] so that

�(x) =

{
1

b−a when x ∈ [a, b],

0 otherwise.

then E [Y ] takes the form
∫ b
a f (x) 1

b−a dx . Hence,

I =

∫ b

a
f (x)

b − a

b − a
dx = (b− a)

∫ b

a
f (x)

1

b − a
dx = (b− a)E [Y ].
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Derivation

Theorem

The Law of Large Numbers states that for any random variable

X with E [X ] = �X , that X̄N
P→ �X as N →∞.
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Derivation

Because I can be expressed in terms of E [Y ], this means

(b − a)ȲN
P→ (b − a)�Y = (b − a)E [Y ] = I .

Thus, we can say for large N, (b − a)ȲN = (b − a)f̄ (XN) ≈ I .
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Further Analysis of Monte Carlo Integration

Many of the details of MCI should seem strikingly similar to the
process of Riemann integration. In both cases, we choose an
arbitrary selection of points across the particular interval in mind,
and use these values to construct a sum which proves more precise
as the number of points is increased.
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Further Analysis..

Theorem

Riemann Integrability∫ b
a f (x) dx exists and equals I if and only if

∀ � > 0, ∃ � > 0 where

∣∣∣∣∣
(

N∑
i=1

f (x̃i )Δxi

)
− I

∣∣∣∣∣ < �

∀ X = {x1, x2, ..., xN+1} with a ≤ x1 < x2 < ... < xN+1 ≤ b and

Δxi = xi+1 − xi < � for 1 ≤ i ≤ N and ∀ X̃ = {x̃i ∣x̃i ∈ [xi , xi+1]}.
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Further Analysis..

Definition

The Mesh of X
Denoted ∥X∥, the mesh of a partition, X , is defined as the
max{Δxi = xi+1 − xi} for 1 ≤ i < N where N is the size of the
partition.
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Further Analysis..

Since for a set function and interval, the error of the Riemann
Sum, �, depends upon the size of the mesh, which is strictly less
than �, one should pay special attention to the behavior of the
mesh during Monte Carlo simulations. Thus, the question
becomes: if an interval is divided into N subintervals by N − 1
points chosen from the uniform distribution over that interval,
what is the probability that no single subinterval is larger than �?
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Further Analysis..

First, if the unit interval is split into N intervals, then ∥X∥ ≥ 1
N .

Hence, the probability that the next point will refine the partition
must be greater than or equal to 1

N which is positive for any
N ∈ 1, 2, ...
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Further Analysis..

Furthermore, it can be shown that the probability that none of i
specific subintervals will be less than � is equal to (1− i�)N−1[3].
Thus, the probability that the mesh of a partition is less than some
given � is given by

[3] Ψ�(N) = 1−
r∑

i=1

(−1)i−1
(

N′

i

)
(1− i�)N−1 where r =

⌊
1

�

⌋
which will show to increase in value as N is increased.
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Further Analysis..

Ψ�(N)→ 1 as N →∞

Thus, sufficiently large values of N almost surely guarantees that
the mesh of the partition from which the selection points are
drawn is smaller than the required � which in turn sharpens the
approximation.
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Further Analysis..

Yet, since the rate of convergence of Ψ is still in question and since
the required � may be impractically small, increasing N is not
always the most efficent method to yield a more accurate result.
We will later show yet another method for bettering the
approximation.
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Use of Monte Carlo Integration to Estimate �
Defining X and f(X)

We can now compute an estimate for the value of the definite
integral

∫ 1
−1

1
1+x2

dx using Monte Carlo Integration and use this to
estimate the value of �. This is possible since it is known from
calculus that ∫ 1

−1

1

1 + x2
dx =

�

2

In order to use Monte Carlo Integration, first we define X to be a
random variable uniformly distributed on the interval [0,1], that is
X ∼ U[0, 1] for reasons that will become apparent in a moment.
Next we let f (X ) = 1

1+x2
which is a function of our random

variable. By definition the expected value of f (X ) is

E [f (X )] =

∫ ∞
−∞

f (x)g(x) dx

where g(x) is the probability distribution of X .
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Use of Monte Carlo Integration to Estimate �
Setting up the Simulation

Using the definitions from the introduction we see further that

E [f (X )] =

∫ 1

0

1

1 + x2
dx

Since f (X ) is an even function, note that 2E [f (X )] is equal to the
value of the desired definite integral.
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Use of Monte Carlo Integration to Estimate �
Running the Simulation

Now we use a simulation to estimate E [f (X )]. This is done by
instructing Mathematica to repeatedly pick a random number
between 0 and 1 to use as X and then record the value of f (X ).
Once this has been done one hundred thousand times, the mean is
taken as an estimate of E [f (X )]. Recall that this is justifed by the
Law of Large Numbers explained previously. Finally, we multiply
this estimate by 2 to get our estimate of the value of the desired
definite integral. The precise Mathematica code utilizes the
Mean[], Table[], and Random[] functions.
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Use of Monte Carlo Integration to Estimate �
The results

Performing this simulation in Mathematica yields an estimate of
1.5713 which is fairly close to the known value of the definite
integral �

2 ≈ 1.570796 . . . Furthermore, we can double our estimate
and obtain 3.14261, a fairly close estimate of �.
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Intro to Variance Reduction

Variance reduction refers to a variety of different methods which
may be employed in conjunction with Monte Carlo simulations,
including partial integration, systematic sampling, and control
variates. In order to fully explain the following concepts, a few
definitions must be established.
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Definitions1

Definition

Variance
If X is a random variable with mean �X , the the variance of X ,
Var(X ), is defined by

Var(X ) = E [(X − �X )2]
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Definitions

Definition

Covariance
Let X and Y be random variables. The covariance between X and
Y, denoted Cov(X,Y), is defined by

Cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ])]

Definition

Correlation
The correlation of two random variables X and Y , denoted by
�(X ,Y ), is defined as

�(X ,Y ) =
Cov(X ,Y )√
Var(X )Var(Y )

as long as Var(X )Var(Y ) > 0. It can be shown that
−1 ≤ �(X ,Y ) ≤ 1

N. Cannady, P. Faciane, D. Miksa Using MCI and Control Variates to Estimate �



Goal

The joint goal of the aforementioned variance reduction methods is
to minimize the variance on a simulation. The variance in a
simulation represents the statistical uncertainty in the result. Thus,
reduction of variance clearly leads to a more accurate result. We
are interested in demonstrating a method using what are known as
control variates and testing the efficacy of the control variates
method.
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Control Variates

The control variate method is useful when trying to simulate the
expected value of a random variable, X. A second random variable,
Y, for which the expected value is known, is introduced. The
correlation between the two random variables must then be
maximized such that the variance of the estimate of the X is
reduced, leading to a more accurate simulation.
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Derivation

Suppose X is a random variable and that we wish to simulate
E [f (X )]. Suppose also ∃ g(X ) such that E [g(X )] = �g . We then
define a variable

W = f (X ) + a[g(X )− �g ]

Note that

E [W ] = E [f (X ) + a[g(X )− �g ]] = E [f (X )]

Note that the variance of W is

Var(W ) = Var [f (X )] + a2Var [g(X )] + 2aCov [g(X ), f (X )]

N. Cannady, P. Faciane, D. Miksa Using MCI and Control Variates to Estimate �



Derivation

The optimal value of a can be found using simple calculus by first
differentiating with respect to a,

d

da
[Var(W )] =

d

da
[Var [f (X )] + a2Var [g(X )] + 2aCov [g(X ), f (X )]]

setting the derivative to 0,

0 = 2aVar [g(X )] + 2Cov [g(X ), f (X )]

and solving for a,

a = −Cov [g(X ), f (X )]

Var [g(X )]
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Derivation

We substitute this value of a into our formula for Var(W ) and get

Var(W ) = Var [f (X )]− [Cov [g(X ), f (X )]]2

Var [g(X )]

We further define

R(�) =
[Cov [g(X ), f (X )]]2

Var [g(X )]

for notation convenience.
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Family of g�(X )

In the variance reduction of our simulation, we used the family of
functions

g�(X ) = e
−X2

�

for
� > 0

The parameter sigma must be optimized to determine which
g�(X ) would most reduce the variance of our estimate.
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Optimizing �

We saw in the previous sections that

Var(W ) = Var [f (X )]− [Cov [g(X ), f (X )]]2

Var [g(X )]

or
Var(W ) = Var [f (X )]− R(�)
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Optimizing �

We have no control over the value of Var [f (X )] itself, due to its
constancy. However, we if we can maximize the value of R(�),
then we would minimize Var(W ). In order to analytically optimize
R(�), we need to differentiate the term. We found R(�) to be
analytically intractable and found alternative means for
optimization.
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Numerically Optimizing �

To numerically calculate the optimal �, rewrite the ratio in mind
and use numerical methods to plot its value for a range of values.

R(�) =
Cov(f (x), g(x , �))2

Var(g(x , �))
=

(E [f (x)g(x , �)]− E [f (x)]E [g(x , �)])2

E [g(x , �)2]− E [g(x , �)]2
=

(12
∫ 1
−1 f (x)g(x , �) dx − (12

∫ 1
−1 f (x) dx)(12

∫ 1
−1 g(x , �) dx))2

1
2

∫ 1
−1 g

2(x , �) dx − (12
∫ 1
−1 g(x , �) dx)2

=

(
∫ 1
0 f (x)g(x , �) dx − (

∫ 1
0 f (x) dx)(

∫ 1
0 g(x , �) dx))2∫ 1

0 g2(x , �) dx − (
∫ 1
0 g(x , �) dx)
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Numerically Optimizing �

Intuitively, plotting R(�) should map out a peak near some region
of � and focusing in on this interval should justly yield an
approximated �. Since the integral form of R(�) can be evaluated
both by Mathematica’s built in functions or by the pre-described
method of MCI, the optimal � was evaluated using both methods
for comparison.
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Numerically Optimizing �

Figure: Finding the Optimal � Using MCI (top) and Built-In Integrate
(bottom)
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Using MCI with a Control Variate to Estimate �
Defining X and W

Now that we have found the optimal value of �, we define

W = f (X ) + a[g�(X )− �g ]

where � = 0.68376. Next, we define X to be a random variable
uniformly distributed on the interval [0,1], that is X ∼ U[0, 1]. As
before, we then instruct Mathematica to repeatedly pick a random
number between 0 and 1 to use as X and then record the value of
W which is a function of X . Once this has been done several
thousand times, the mean is taken as an estimate of
E [W ] = E [f (X )]. Finally, we multiply this estimate by 2 to get
our estimate of the value of the desired definite integral.
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Using MCI with a Control Variate to Estimate �
The final results

Performing this simulation in Mathematica yields an estimate of
1.57179 which is fairly close to the known value of the definite
integral �

2 ≈ 1.5708 . . . Furthermore, we can double our estimate
and obtain 3.14357, a fairly close estimate of �.
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