Introduction to convex sets II: Convex Functions

September 12, 2007

A. Guevara

Control Theory Seminar, Fall 2007

Basic concepts

- Extended-valued functions
- Real case
- First and second order conditions
- Examples

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

References

- Bertsekas, D.P., Nedić, A. and Ozdaglar, A. Convex analysis and optimization. Athena Scientific, Belmont, Massachusetts, 2003.
- Borwein, J.M. and Lewis, A.S. *Convex analysis and nonlinear optimization*. Springer Verlag, N.Y., 2000.
- Boyd, S. and Vanderberghe, L. Convex optimization.
 Cambridge Univ. Press, Cambridge, U.K., 2004.
- Hiriart-Urruty, J-B. and Lemaréchal, C. Fundamentals on convex analysis. Springer, Berlin, 2001.
- Rockafellar, R.T. *Convex analysis*. Princeton Univ. Press, Princeton, N.J., 1970.

・ロト ・同ト ・ヨト ・ヨト - ヨ

Notation

- We work in a n-dimensional real Euclidean space E.
- Sets will be indicated with capital letters.
- Points and vectors will be lower case.
- For scalars we use greek characters.

- 4 同 ト - 4 目 ト

Extended-valued functions Real case First and second order conditions Examples

Convex functions

Let $C \subset E$ be a convex set. A function $f : C \to \mathbb{R}$ is convex if $f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$ for all $x, y \in C$ and $0 < \alpha < 1$.

Introduction to convex sets II: Convex Functions

Extended-valued functions Real case First and second order conditions Examples

Geometric interpretation

Let $C \subset E$ be a convex set. A function $f : C \to \mathbb{R}$ is convex if and only if the set

$$epi f = \{(x, r) \mid r \ge f(x)\}$$

is convex as a subset of $E \times \mathbb{R}$.

Extended-valued functions Real case First and second order conditions Examples

Extended definition of convex function

Definition

A function $\tilde{f}: E \to [-\infty, +\infty]$ is convex if its epigraph is a convex set in $E \times \mathbb{R}$.

Extended-valued functions Real case First and second order conditions Examples

Extended definition of convex function

Definition

A function $\tilde{f}: E \to [-\infty, +\infty]$ is convex if its epigraph is a convex set in $E \times \mathbb{R}$.

Why do we allow $\pm\infty$ as possible values?

Extended-valued functions Real case First and second order conditions Examples

Extended definition of convex function

Definition

A function $\tilde{f}: E \to [-\infty, +\infty]$ is convex if its epigraph is a convex set in $E \times \mathbb{R}$.

Why do we allow $\pm\infty$ as possible values?

Simpifies notation.

Extended-valued functions Real case First and second order conditions Examples

Extended definition of convex function

Definition

A function $\tilde{f}: E \to [-\infty, +\infty]$ is convex if its epigraph is a convex set in $E \times \mathbb{R}$.

Why do we allow $\pm\infty$ as possible values?

- Simpifies notation.
- The supremum of a set of functions might take infinite values, even if all the functions in the set are finite.

・ 同 ト ・ 三 ト ・ 三 ト

Extended-valued functions Real case First and second order conditions Examples

Extended definition of convex function

Definition

A function $\tilde{f}: E \to [-\infty, +\infty]$ is convex if its epigraph is a convex set in $E \times \mathbb{R}$.

Why do we allow $\pm\infty$ as possible values?

- Simpifies notation.
- The supremum of a set of functions might take infinite values, even if all the functions in the set are finite.
- Allows penalization and exclusion in optimization problems.

Extended-valued functions Real case First and second order conditions Examples

Properness

Definition

A extended-valued function \tilde{f} is called *proper* provided

- \tilde{f} is not identically $+\infty$
- $\tilde{f}(x) > -\infty$, for all x.

Proper functions help us avoid undefined expressions such as $+\infty-\infty.$

Extended-valued functions Real case First and second order conditions Examples

Extension of a finite-valued convex function on C as a extended-valued convex function on E

$$\widetilde{f}(x) = egin{cases} f(x) & ext{if } x \in C, \ +\infty & ext{otherwise.} \end{cases}$$

Introduction to convex sets II: Convex Functions

Extended-valued functions Real case First and second order conditions Examples

Restriction of a extended-valued proper convex function on E to a finite-valued convex function

Take

$$C = \operatorname{dom} \tilde{f} = \left\{ x \,|\, \tilde{f}(x) < +\infty \right\}$$

and define

$$f: C \to \mathbb{R}, f = \tilde{f}_{|C|}$$

Introduction to convex sets II: Convex Functions

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ →

Extended-valued functions Real case First and second order conditions Examples

Jensen's inequality

Let $f: E \to (-\infty, +\infty]$ be a function. Then f is convex if and only if

$$f(\sum_{i=1}^m \lambda_i x_i) \leq \sum_{i=1}^m \lambda_i f(x_i)$$

whenever $\lambda_i \geq 0$, for all i, $\sum_{i=1}^m \lambda_i = 1$.

Introduction to convex sets II: Convex Functions

Extended-valued functions Real case First and second order conditions Examples

Convex functions on the real line

For g a real-valued function on an interval I.

Proposition

g is convex on I if and only if, for all $x_0 \in I$, the slope-function

$$x\mapsto rac{f(x)-f(x_0)}{x-x_0}$$

is increasing in $I \setminus \{x_0\}$.

Proposition

If g is convex on I, then g is continuous on the interior of I.

Introduction to convex sets II: Convex Functions

- 4 同 6 4 日 6 4 日 6 1

Extended-valued functions **Real case** First and second order conditions Examples

Convex functions on the real line

Proposition

If g is convex on I, then g admits finite left and right derivatives at each x_0 in the interior of I.

Introduction to convex sets II: Convex Functions

Extended-valued functions Real case First and second order conditions Examples

First order condition

Theorem

Let $f: E \to [-\infty, +\infty]$ be a differentiable function. Then f is convex if and only if dom f is a convex set and

$$f(y) \ge f(x) + \langle
abla f(x), y - x
angle$$

for every $x, y \in dom f$.

Introduction to convex sets II: Convex Functions

Extended-valued functions Real case First and second order conditions Examples

Necessary and sufficient condition for optimality

Corollary

Let $f : E \to [-\infty, +\infty]$ be a differentiable convex function. Then $x \in \text{dom } f$ is a global minimizer if and only if $\nabla f(x) = 0$

Corollary

Let $f : E \to [-\infty, +\infty]$ be a differentiable convex function. Then the mapping ∇f is monotone, i.e.,

$$\langle \nabla f(y) - \nabla f(x), y - x \rangle \ge 0, x, y \in dom f$$

Extended-valued functions Real case First and second order conditions Examples

Sketch of proof

- (1) Show the result for $g : \mathbb{R} \to [-\infty, +\infty]$.
- (2) Use the fact that $f : E \to [-\infty, +\infty]$ is convex if and only if the real function g defined by

$$g(t) = f(ty + (1 - t)x), ty + (1 - t)x \in \text{dom } f$$

is convex.

Extended-valued functions Real case First and second order conditions Examples

Second order condition

Theorem

Let f be a twice continuously differentiable real-valued function on an open interval (α, β) . Then f is convex if and only if its second derivative is nonnegative throughout (α, β) .

Theorem

Let $f : E \to [-\infty, +\infty]$ be a twice continuously differentiable function. Then f is convex if and only if dom f is a convex set and the Hessian matrix $\nabla^2 f(x) \succeq 0$ for all $x \in \text{dom } f$.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト ・

Extended-valued functions Real case First and second order conditions Examples

Examples of convex functions in the real line

•
$$g(x) = \exp(\alpha x), x \in \mathbb{R}$$

• $g(x) = x^{p}, 1 \le p < \infty, x \le 0$
• $g(x) = |x|^{p}, 1 \le p < \infty$
• $g(x) = -x^{p}, 0 \le p < 1, x \le 0$
• $g(x) = x^{p}, -\infty 0$
• $g(x) = (\alpha^{2} - x^{2})^{-1/2}, \alpha > 0, |x| < \alpha$
• $g(x) = -\log(x), x > 0$

• Negative entropy $g(x) = x \log(x), x > 0$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Extended-valued functions Real case First and second order conditions Examples

Examples of convex functions in \mathbb{R}^n

Any norm

•
$$f(x) = \max \{x_1, x_2, \dots, x_n\}$$

- Log-sum-exp $f(x) = \log(\exp(x_1) + \exp(x_2) + \cdots + \exp(x_n))$
- Geometric mean $f(x) = (\prod_{i=1}^{n} x_i)^{1/n}$
- Indicator function of a convex set C , $\delta(\cdot \mid C)$

$$\delta(x \mid \mathcal{C}) = egin{cases} 0 & ext{if } x \in \mathcal{C}, \ +\infty & ext{otherwise}. \end{cases}$$

We have

$$\inf_{x \in C} f(x) = \inf_{x \in E} \left(f(x) + \delta(x \mid C) \right)$$

Extended-valued functions Real case First and second order conditions Examples

Operations that preserve convexity

Suppose f, f_1, \ldots, f_m are convex functions on E

• $h(x) = \lambda_1 f_1 + \cdots + \lambda_m f_m$, λ_i are positive scalars.

•
$$h(x) = \sup \{f_1(x), \ldots, f_n(x)\}$$

- h(x) = f(Ax), A linear transformation.
- Inf-convolution

 $h(x) = (f_1 \star f_2)(x) = \inf_{y \in E} \{f_1(x - y) + f_2(y)\}, f_1, f_2 \text{ proper}$

・ロト ・ 同ト ・ ヨト ・ ヨト

Applications to inequalities

Convexity of $-\log(x)$ ensures that, for $0 < \theta < 1$, $a, b \ge 0$

$$a^ heta b^{1- heta} \leq heta a + (1- heta) b$$

A particular selection for *a* and *b* helps proving Hölder's inequality: for p > 1, $\frac{1}{p} + \frac{1}{q} = 1$,

$$\sum_{i=1}^n |x_iy_i| \leq \left(\sum_{i=1}^n x_i^p
ight)^{1/p} \left(\sum_{i=1}^n y_i^q
ight)^{1/q},$$
 where $1/p + 1/q = 1$

More results: Level sets

Proposition

For a convex function f on E, the level sets

$$\{x \mid f(x) < \alpha\}$$
 and $\{x \mid f(x) \le \alpha\}$

are convex for every α .

Note: reverse does not hold!

Corollary

For an arbitrary family $\{f_i\}$ of convex functions on E and real numbers $\alpha_i, i \in I$, the set

$$\{x \mid f_i(x) \leq \alpha_i, i \in I\}$$

Existence of global minimizers

Proposition

Let $D \subset E$ be nonempty and closed, and that all the level sets of the continuous function $f : D \to \mathbb{R}$ are bounded. Then f has a global minimizer.

Proposition

For a convex $C \subset E$, a convex function $f : C \to \mathbb{R}$ has bounded level sets if and only if it satisfies the growth condition

$$\liminf_{|x||\to\infty}\frac{f(x)}{||x||}>0$$

・ 同 ト ・ 三 ト ・ 三 ト