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Notation

We work in a n-dimensional real Euclidean space E .

Sets will be indicated with capital letters.

Points and vectors will be lower case.

For scalars we use greek characters.
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Convex functions

Let C ⊂ E be a convex set. A function f : C → R is convex if

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)

for all x , y ∈ C and 0 < α < 1.
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Geometric interpretation

Let C ⊂ E be a convex set. A function f : C → R is convex if and
only if the set

epi f = {(x , r) | r ≥ f (x)}
is convex as a subset of E × R.
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Extended definition of convex function

Definition

A function f̃ : E → [−∞,+∞] is convex if its epigraph is a convex
set in E × R.

Why do we allow ±∞ as possible values?

Simpifies notation.

The supremum of a set of functions might take infinite values,
even if all the functions in the set are finite.

Allows penalization and exclusion in optimization problems.
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Properness

Definition

A extended-valued function f̃ is called proper provided

f̃ is not identically +∞
f̃ (x) > −∞, for all x.

Proper functions help us avoid undefined expressions such as
+∞−∞.
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Extension of a finite-valued convex function on C as a
extended-valued convex function on E

f̃ (x) =

{
f (x) if x ∈ C ,

+∞ otherwise.
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Restriction of a extended-valued proper convex function on
E to a finite-valued convex function

Take
C = dom f̃ =

{
x | f̃ (x) < +∞

}
and define

f : C → R, f = f̃|C
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Jensen’s inequality

Let f : E → (−∞,+∞] be a function. Then f is convex if and
only if

f (
m∑

i=1

λixi ) ≤
m∑

i=1

λi f (xi )

whenever λi ≥ 0 , for all i ,
∑m

i=1 λi = 1.
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Convex functions on the real line

For g a real-valued function on an interval I .

Proposition

g is convex on I if and only if, for all x0 ∈ I , the slope-function

x 7→ f (x)− f (x0)

x − x0

is increasing in I \ {x0}.

Proposition

If g is convex on I , then g is continuous on the interior of I .
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Convex functions on the real line

Proposition

If g is convex on I , then g admits finite left and right derivatives
at each x0 in the interior of I .
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First order condition

Theorem

Let f : E → [−∞,+∞] be a differentiable function. Then f is
convex if and only if dom f is a convex set and

f (y) ≥ f (x) + 〈∇f (x), y − x〉

for every x , y ∈ dom f .
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Necessary and sufficient condition for optimality

Corollary

Let f : E → [−∞,+∞] be a differentiable convex function. Then
x ∈ dom f is a global minimizer if and only if ∇f (x) = 0

Corollary

Let f : E → [−∞,+∞] be a differentiable convex function. Then
the mapping ∇f is monotone, i.e.,

〈∇f (y)−∇f (x), y − x〉 ≥ 0, x , y ∈ dom f

Introduction to convex sets II: Convex Functions



Table of contents
Basic concepts

Applications

Extended-valued functions
Real case
First and second order conditions
Examples

Sketch of proof

(1) Show the result for g : R → [−∞,+∞].

(2) Use the fact that f : E → [−∞,+∞] is convex if and only if
the real function g defined by

g(t) = f (ty + (1− t)x), ty + (1− t)x ∈ dom f

is convex.
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Second order condition

Theorem

Let f be a twice continuously differentiable real-valued function on
an open interval (α, β). Then f is convex if and only if its second
derivative is nonnegative throughout (α, β).

Theorem

Let f : E → [−∞,+∞] be a twice continuously differentiable
function. Then f is convex if and only if dom f is a convex set and
the Hessian matrix ∇2f (x) � 0 for all x ∈ dom f .
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Examples of convex functions in the real line

g(x) = exp(αx), x ∈ R
g(x) = xp, 1 ≤ p < ∞, x ≤ 0

g(x) = |x |p, 1 ≤ p < ∞
g(x) = −xp, 0 ≤ p < 1, x ≤ 0

g(x) = xp,−∞ < p < 0, x > 0

g(x) =
(
α2 − x2

)−1/2
, α > 0, |x | < α

g(x) = − log(x), x > 0

Negative entropy g(x) = x log(x), x > 0
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Examples of convex functions in Rn

Any norm

f (x) = max {x1, x2, . . . , xn}
Log-sum-exp f (x) = log(exp(x1) + exp(x2) + · · ·+ exp(xn))

Geometric mean f (x) = (
∏n

i=1 xi )
1/n

Indicator function of a convex set C , δ(· |C )

δ(x |C ) =

{
0 if x ∈ C ,

+∞ otherwise.

We have
inf
x∈C

f (x) = inf
x∈E

(f (x) + δ(x |C ))
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Operations that preserve convexity

Suppose f , f1, . . . , fm are convex functions on E

h(x) = λ1f1 + · · ·+ λmfm, λi are positive scalars.

h(x) = sup {f1(x), . . . , fn(x)}.
h(x) = f (Ax),A linear transformation.

Inf-convolution
h(x) = (f1 ? f2)(x) = infy∈E {f1(x − y) + f2(y)}, f1, f2 proper
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Applications to inequalities

Convexity of − log(x) ensures that, for 0 < θ < 1, a, b ≥ 0

aθb1−θ ≤ θa + (1− θ)b

A particular selection for a and b helps proving Hölder’s inequality:
for p > 1, 1

p + 1
q = 1,

n∑
i=1

|xiyi | ≤

(
n∑

i=1

xp
i

)1/p ( n∑
i=1

yq
i

)1/q

, where 1/p + 1/q = 1
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More results: Level sets

Proposition

For a convex function f on E, the level sets

{x | f (x) < α} and {x | f (x) ≤ α}

are convex for every α.

Note: reverse does not hold!

Corollary

For an arbitrary family {fi} of convex functions on E and real
numbers αi , i ∈ I , the set

{x | fi (x) ≤ αi , i ∈ I}

is convex.
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Existence of global minimizers

Proposition

Let D ⊂ E be nonempty and closed, and that all the level sets of
the continuous function f : D → R are bounded. Then f has a
global minimizer.

Proposition

For a convex C ⊂ E , a convex function f : C → R has bounded
level sets if and only if it satisfies the growth condition

lim inf
||x ||→∞

f (x)

||x ||
> 0
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